
- « Previous Article
- Table of Contents
- Next Article »
f Ethylene production in Synechocystis sp. PCC 6803 promotes phototactic movement
- Authors: Ekaterina Kuchmina1 , Stephan Klähn1 , Annik Jakob1,2 , Werner Bigott1 , Heike Enke3,† , Ulf Dühring3 , Annegret Wilde1,4
-
- VIEW AFFILIATIONS
-
1 1Institute of Biology III, University of Freiburg, Schänzlestraße 1, 79104 Freiburg, Germany 2 2Spemann Graduate School of Biology and Medicine (SGBM), University of Freiburg, Freiburg, Germany 3 3Algenol Biofuels Germany GmbH, Magnusstraße 11, 12489 Berlin, Germany 4 4BIOSS Centre for Biological Signalling Studies, University of Freiburg, 79104 Freiburg, Germany † †Present address: Cyano Biotech GmbH, Magnusstraße 11, 12489 Berlin, Germany.
- *Correspondence: Annegret Wilde [email protected]
- First Published Online: 01 November 2017, Microbiology 163: 1937-1945, doi: 10.1099/mic.0.000564
- Subject: Regulation
- Received:
- Accepted:
- Cover date:




Ethylene production in Synechocystis sp. PCC 6803 promotes phototactic movement, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/163/12/1937_micro000564-1.gif
-
Ethylene is a gaseous signal sensed by plants and bacteria. Heterologous expression of the ethylene-forming enzyme (EFE) from Pseudomonas syringae in cyanobacteria leads to the production of ethylene under photoautotrophic conditions. The recent characterization of an ethylene-responsive signalling pathway affecting phototaxis in the cyanobacterium Synechocystis sp. PCC 6803 implied that biotechnologically relevant ethylene synthesis may induce regulatory processes that are not related to changes in metabolism. Here, we provide data that indicate that endogenously produced ethylene accelerates the movement of cells towards light. Microarray analysis demonstrates that ethylene mainly deactivates transcription from the csiR1/lsiR promoter, which is under the control of the two-component system consisting of the ethylene- and UV-A-sensing histidine kinase UirS and the DNA-binding response regulator UirR. Surprisingly, ethylene production triggers a very specific transcriptional response and only a few other smaller transcriptional changes are detected in the microarray analysis.
-
Three supplementary figures, two supplementary tables and one data file are available with the online version of this article.
- Keyword(s): transcription, ethylene, cyanobacteria, phototaxis
© 2017 The Authors
-
1. Savakis P, Hellingwerf KJ. Engineering cyanobacteria for direct biofuel production from CO2. Curr Opin Biotechnol 2015;33:8–14 [CrossRef][PubMed]
-
2. Eckert C, Xu W, Xiong W, Lynch S, Ungerer J et al. Ethylene-forming enzyme and bioethylene production. Biotechnol Biofuels 2014;7:33 [CrossRef][PubMed]
-
3. Ungerer J, Tao L, Davis M, Ghirardi M, Maness P-C et al. Sustained photosynthetic conversion of CO2 to ethylene in recombinant cyanobacterium Synechocystis 6803. Energy Environ Sci 2012;5:8998 [CrossRef]
-
4. Zavřel T, Knoop H, Steuer R, Jones PR, Červený J et al. A quantitative evaluation of ethylene production in the recombinant cyanobacterium Synechocystis sp. PCC 6803 harboring the ethylene-forming enzyme by membrane inlet mass spectrometry. Bioresour Technol 2016;202:142–151 [CrossRef][PubMed]
-
5. Veetil VP, Angermayr SA, Hellingwerf KJ. Ethylene production with engineered Synechocystis sp. PCC 6803 strains. Microb Cell Fact 2017;16:34 [CrossRef][PubMed]
-
6. Guerrero F, Carbonell V, Cossu M, Correddu D, Jones PR. Ethylene synthesis and regulated expression of recombinant protein in Synechocystis sp. PCC 6803. PLoS One 2012;7:e50470 [CrossRef][PubMed]
-
7. Mo H, Xie X, Zhu T, Lu X. Effects of global transcription factor NtcA on photosynthetic production of ethylene in recombinant Synechocystis sp. PCC 6803. Biotechnol Biofuels 2017;10:145 [CrossRef][PubMed]
-
8. McManus MT. The Plant Hormone Ethylenevol. 44 UK: Wiley-Blackwell; 2012; pp.1–416
-
9. Huang T-C, Chow T-J. Ethylene production by blue-green algae. Bot Bull Acad Sin 1984;25:81–86
-
10. Le Henry M, Charton M, Alignan M, Maury P, Luniov A et al. Ethylene stimulates growth and affects fatty acid content of Synechocystis sp. PCC 6803. Algal Res 2017;26:234–239 [CrossRef]
-
11. Mount SM, Chang C. Evidence for a plastid origin of plant ethylene receptor genes. Plant Physiol 2002;130:10–14 [CrossRef][PubMed]
-
12. Wang W, Esch JJ, Shiu SH, Agula H, Binder BM et al. Identification of important regions for ethylene binding and signaling in the transmembrane domain of the ETR1 ethylene receptor of Arabidopsis. Plant Cell 2006;18:3429–3442 [CrossRef][PubMed]
-
13. Lacey RF, Binder BM. Ethylene regulates the physiology of the cyanobacterium Synechocystis sp. PCC 6803 via an ethylene receptor. Plant Physiol 2016;171:2798–2809 [CrossRef][PubMed]
-
14. Song JY, Cho HS, Cho JI, Jeon JS, Lagarias JC et al. Near-UV cyanobacteriochrome signaling system elicits negative phototaxis in the cyanobacterium Synechocystis sp. PCC 6803. Proc Natl Acad Sci USA 2011;108:10780–10785 [CrossRef][PubMed]
-
15. Ramakrishnan P, Tabor JJ. Repurposing Synechocystis PCC6803 UirS-UirR as a UV-violet/green photoreversible transcriptional regulatory tool in E. coli. ACS Synth Biol 2016;5:733–740 [CrossRef][PubMed]
-
16. Jakob A, Schuergers N, Wilde A. Phototaxis assays of Synechocystis sp. PCC 6803 at macroscopic and microscopic scales. Bio Protoc 2017;7: [CrossRef]
-
17. Zinchenko VV, Piven V, Melnik VA, Shestakov SV. Vectors for the complementation analysis of cyanobacterial mutants. Russ J Genet 1999;35:228–232
-
18. Black TA, Cai Y, Wolk CP. Spatial expression and autoregulation of hetR, a gene involved in the control of heterocyst development in Anabaena. Mol Microbiol 1993;9:77–84 [CrossRef][PubMed]
-
19. Trautmann D, Voss B, Wilde A, Al-Babili S, Hess WR. Microevolution in cyanobacteria: re-sequencing a motile substrain of Synechocystis sp. PCC 6803. DNA Res 2012;19:435–448 [CrossRef][PubMed]
-
20. Pinto FL, Thapper A, Sontheim W, Lindblad P. Analysis of current and alternative phenol based RNA extraction methodologies for cyanobacteria. BMC Mol Biol 2009;10:79 [CrossRef][PubMed]
-
21. Georg J, Dienst D, Schürgers N, Wallner T, Kopp D et al. The small regulatory RNA SyR1/PsrR1 controls photosynthetic functions in cyanobacteria. Plant Cell 2014;26:3661–3679 [CrossRef][PubMed]
-
22. Georg J, Voss B, Scholz I, Mitschke J, Wilde A et al. Evidence for a major role of antisense RNAs in cyanobacterial gene regulation. Mol Syst Biol 2009;5:305 [CrossRef][PubMed]
-
23. Kopf M, Klähn S, Scholz I, Matthiessen JK, Hess WR et al. Comparative analysis of the primary transcriptome of Synechocystis sp. PCC 6803. DNA Res 2014;21:527–539 [CrossRef][PubMed]
-
24. Kopf M, Hess WR. Regulatory RNAs in photosynthetic cyanobacteria. FEMS Microbiol Rev 2015;39:301–315 [CrossRef][PubMed]
-
25. Davis KM, Isberg RR. Defining heterogeneity within bacterial populations via single cell approaches. Bioessays 2016;38:782–790 [CrossRef][PubMed]
-
26. Klähn S, Schaal C, Georg J, Baumgartner D, Knippen G et al. The sRNA NsiR4 is involved in nitrogen assimilation control in cyanobacteria by targeting glutamine synthetase inactivating factor IF7. Proc Natl Acad Sci USA 2015;112:E6243E6252 [CrossRef][PubMed]
-
27. Kim H-E, Shitashiro M, Kuroda A, Takiguchi N, Kato J. Ethylene chemotaxis in Pseudomonas aeruginosa and other Pseudomonas species. Microbes Environ 2007;22:186–189 [CrossRef]
-
28. Ohkawa H, Hashimoto N, Furukawa S, Kadono T, Kawano T. Forced symbiosis between Synechocystis spp. PCC 6803 and apo-symbiotic Paramecium bursaria as an experimental model for evolutionary emergence of primitive photosynthetic eukaryotes. Plant Signal Behav 2011;6:773–776 [CrossRef][PubMed]
-
29. David C, Bühler K, Schmid A. Stabilization of single species Synechocystis biofilms by cultivation under segmented flow. J Ind Microbiol Biotechnol 2015;42:1083–1089 [CrossRef][PubMed]
-
30. Schuergers N, Mullineaux CW, Wilde A. Cyanobacteria in motion. Curr Opin Plant Biol 2017;37:109–115 [CrossRef][PubMed]
-
31. Mitschke J, Georg J, Scholz I, Sharma CM, Dienst D et al. An experimentally anchored map of transcriptional start sites in the model cyanobacterium Synechocystis sp. PCC6803. Proc Natl Acad Sci USA 2011;108:2124–2129 [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.000564dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.000564dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....