1887

Abstract

Regulating intracellular levels of biological metal ions is essential for all bacterial species, as they are needed for virulence and a range of metabolic processes. Zinc is the second most abundant metal ion in Pseudomonas aeruginosa, but little is known about its regulation. Recent studies have identified a novel operon, zrmABCD (also called cntOLMI), encoding a metallophore system (pseudopaline) involved in zinc acquisition. Expression of this operon has been implicated in human infections and is regulated by the transcriptional regulator Zur (Zn uptake regulator). In this study, we show that the intergenic promoter region in front of zrmABCD is a target for recurrent adaptive mutations during chronic infection of cystic fibrosis (CF) patients. We characterize the inter- and intraclonal sequence polymorphisms found in the promoter region of the metallophore system and find that most alterations increase promoter activity. One of the evolved promoters displays a more than 10-fold increase compared to the ancestral strain due to the combined effect of an altered binding site of Zur and changes to the RpoD-binding motif. This specific evolved promoter responds differently to changes in metal ion concentrations in chelated medium. We have previously shown that P. aeruginosa evolves toward iron acquisition from haemoglobin during long-term CF infections. We hereby provide the second example of adaptive mutations targeting intergenic regions that affect metal ion uptake systems during CF infections, and the first involving zinc uptake. Our results suggest that the scarcity of metal ions (including iron and zinc) is an important evolutionary driver in CF host adaptation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000687
2018-07-03
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/8/1038.html?itemId=/content/journal/micro/10.1099/mic.0.000687&mimeType=html&fmt=ahah

References

  1. Dupont CL, Yang S, Palenik B, Bourne PE. Modern proteomes contain putative imprints of ancient shifts in trace metal geochemistry. Proc Natl Acad Sci USA 2006; 103:17822–17827 [View Article][PubMed]
    [Google Scholar]
  2. Cvetkovic A, Menon AL, Thorgersen MP, Scott JW, Poole FL et al. Microbial metalloproteomes are largely uncharacterized. Nature 2010; 466:779–782 [View Article][PubMed]
    [Google Scholar]
  3. Marvig RL, Damkiær S, Khademi SM, Markussen TM, Molin S et al. Within-host evolution of Pseudomonas aeruginosa reveals adaptation toward iron acquisition from hemoglobin. MBio 2014; 5:e00966-14 [View Article][PubMed]
    [Google Scholar]
  4. Nguyen AT, O'Neill MJ, Watts AM, Robson CL, Lamont IL et al. Adaptation of iron homeostasis pathways by a Pseudomonas aeruginosa pyoverdine mutant in the cystic fibrosis lung. J Bacteriol 2014; 196:2265–2276 [View Article][PubMed]
    [Google Scholar]
  5. de Vos D, de Chial M, Cochez C, Jansen S, Tümmler B et al. Study of pyoverdine type and production by Pseudomonas aeruginosa isolated from cystic fibrosis patients: prevalence of type II pyoverdine isolates and accumulation of pyoverdine-negative mutations. Arch Microbiol 2001; 175:384–388 [View Article][PubMed]
    [Google Scholar]
  6. Schalk IJ, Cunrath O. An overview of the biological metal uptake pathways in Pseudomonas aeruginosa. Environ Microbiol 2016; 18:3227–3246 [View Article][PubMed]
    [Google Scholar]
  7. Krebs NF, Westcott JE, Arnold TD, Kluger BM, Accurso FJ et al. Abnormalities in zinc homeostasis in young infants with cystic fibrosis. Pediatr Res 2000; 48:256–261 [View Article][PubMed]
    [Google Scholar]
  8. Akanli L, Lowenthal DB, Gjonaj S, Dozor AJ. Plasma and red blood cell zinc in cystic fibrosis. Pediatr Pulmonol 2003; 35:2–7 [View Article][PubMed]
    [Google Scholar]
  9. Golden BE, Clohessy PA, Russell G, Fagerhol MK. Calprotectin as a marker of inflammation in cystic fibrosis. Arch Dis Child 1996; 74:136–139 [View Article][PubMed]
    [Google Scholar]
  10. MacGregor G, Gray RD, Hilliard TN, Imrie M, Boyd AC et al. Biomarkers for cystic fibrosis lung disease: application of SELDI-TOF mass spectrometry to BAL fluid. J Cyst Fibros 2008; 7:352–358 [View Article][PubMed]
    [Google Scholar]
  11. Cunrath O, Geoffroy VA, Schalk IJ. Metallome of Pseudomonas aeruginosa: a role for siderophores. Environ Microbiol 2016; 18:3258–3267 [View Article][PubMed]
    [Google Scholar]
  12. Andreini C, Banci L, Bertini I, Rosato A. Zinc through the three domains of life. J Proteome Res 2006; 5:3173–3178 [View Article][PubMed]
    [Google Scholar]
  13. Fajardo A, Hernando-Amado S, Oliver A, Ball G, Filloux A et al. Characterization of a novel Zn²+-dependent intrinsic imipenemase from Pseudomonas aeruginosa. J Antimicrob Chemother 2014; 69:2972–2978 [View Article][PubMed]
    [Google Scholar]
  14. Mastropasqua MC, D'Orazio M, Cerasi M, Pacello F, Gismondi A et al. Growth of Pseudomonas aeruginosa in zinc poor environments is promoted by a nicotianamine-related metallophore. Mol Microbiol 2017; 106:543–561 [View Article][PubMed]
    [Google Scholar]
  15. Corbin BD, Seeley EH, Raab A, Feldmann J, Miller MR et al. Metal chelation and inhibition of bacterial growth in tissue abscesses. Science 2008; 319:962–965 [View Article][PubMed]
    [Google Scholar]
  16. Gläser R, Harder J, Lange H, Bartels J, Christophers E et al. Antimicrobial psoriasin (S100A7) protects human skin from Escherichia coli infection. Nat Immunol 2005; 6:57–64 [View Article][PubMed]
    [Google Scholar]
  17. Hood MI, Skaar EP. Nutritional immunity: transition metals at the pathogen-host interface. Nat Rev Microbiol 2012; 10:525–537 [View Article][PubMed]
    [Google Scholar]
  18. Pederick VG, Eijkelkamp BA, Begg SL, Ween MP, McAllister LJ et al. ZnuA and zinc homeostasis in Pseudomonas aeruginosa. Sci Rep 2015; 5:13139 [View Article][PubMed]
    [Google Scholar]
  19. Ellison ML, Farrow JM, Farrow JM, Parrish W, Danell AS et al. The transcriptional regulator Np20 is the zinc uptake regulator in Pseudomonas aeruginosa. PLoS One 2013; 8:e75389 [View Article][PubMed]
    [Google Scholar]
  20. Patzer SI, Hantke K. The ZnuABC high-affinity zinc uptake system and its regulator Zur in Escherichia coli. Mol Microbiol 1998; 28:1199–1210 [View Article][PubMed]
    [Google Scholar]
  21. Patzer SI, Hantke K. The zinc-responsive regulator Zur and its control of the znu gene cluster encoding the ZnuABC zinc uptake system in Escherichia coli. J Biol Chem 2000; 275:24321–24332 [View Article][PubMed]
    [Google Scholar]
  22. Campoy S, Jara M, Busquets N, Pérez de Rozas AM, Badiola I et al. Role of the high-affinity zinc uptake znuABC system in Salmonella enterica serovar typhimurium virulence. Infect Immun 2002; 70:4721–4725 [View Article][PubMed]
    [Google Scholar]
  23. Lhospice S, Gomez NO, Ouerdane L, Brutesco C, Ghssein G et al. Pseudomonas aeruginosa zinc uptake in chelating environment is primarily mediated by the metallophore pseudopaline. Sci Rep 2017; 7:17132 [View Article][PubMed]
    [Google Scholar]
  24. Ghssein G, Brutesco C, Ouerdane L, Fojcik C, Izaute A et al. Biosynthesis of a broad-spectrum nicotianamine-like metallophore in Staphylococcus aureus. Science 2016; 352:1105–1109 [View Article][PubMed]
    [Google Scholar]
  25. Gi M, Lee KM, Kim SC, Yoon JH, Yoon SS et al. A novel siderophore system is essential for the growth of Pseudomonas aeruginosa in airway mucus. Sci Rep 2015; 5:14644 [View Article][PubMed]
    [Google Scholar]
  26. Beckmann C, Brittnacher M, Ernst R, Mayer-Hamblett N, Miller SI et al. Use of phage display to identify potential Pseudomonas aeruginosa gene products relevant to early cystic fibrosis airway infections. Infect Immun 2005; 73:444–452 [View Article][PubMed]
    [Google Scholar]
  27. Bielecki P, Puchałka J, Wos-Oxley ML, Loessner H, Glik J et al. In-vivo expression profiling of Pseudomonas aeruginosa infections reveals niche-specific and strain-independent transcriptional programs. PLoS One 2011; 6:e24235 [View Article][PubMed]
    [Google Scholar]
  28. Khademi H, Jelsbak L. Host adaptation mediated by intergenic evolution in a bacterial pathogen. bioRxiv 2017 http://biorxiv.org/content/early/2017/12/19/236000
    [Google Scholar]
  29. D'Orazio M, Mastropasqua MC, Cerasi M, Pacello F, Consalvo A et al. The capability of Pseudomonas aeruginosa to recruit zinc under conditions of limited metal availability is affected by inactivation of the ZnuABC transporter. Metallomics 2015; 7:1023–1035 [View Article][PubMed]
    [Google Scholar]
  30. Marvig RL, Johansen HK, Molin S, Jelsbak L. Genome analysis of a transmissible lineage of Pseudomonas aeruginosa reveals pathoadaptive mutations and distinct evolutionary paths of hypermutators. PLoS Genet 2013; 9:e1003741 [View Article][PubMed]
    [Google Scholar]
  31. Solovyev V, Salamov A. Automatic annotation of microbial genomes and metagenomic sequences. Metagenomics and Its Applications in Agriculture, Biomedicine and Environmental Studies Nova Science Publishers, Inc; 2011 pp. 61–78
    [Google Scholar]
  32. Kessler B, de Lorenzo V, Timmis KN. A general system to integrate lacZ fusions into the chromosomes of gram-negative eubacteria: regulation of the Pm promoter of the TOL plasmid studied with all controlling elements in monocopy. Mol Gen Genet 1992; 233:293–301 [View Article][PubMed]
    [Google Scholar]
  33. Taylor RF, Hodson ME, Pitt TL. Auxotrophy of Pseudomonas aeruginosa in cystic fibrosis. FEMS Microbiol Lett 1992; 71:243–246[PubMed]
    [Google Scholar]
  34. Nadal Jimenez P, Koch G, Papaioannou E, Wahjudi M, Krzeslak J et al. Role of PvdQ in Pseudomonas aeruginosa virulence under iron-limiting conditions. Microbiology 2010; 156:49–59 [View Article][PubMed]
    [Google Scholar]
  35. Johnstone TC, Nolan EM. Beyond iron: non-classical biological functions of bacterial siderophores. Dalton Trans 2015; 44:6320–6339 [View Article][PubMed]
    [Google Scholar]
  36. Damkiær S, Yang L, Molin S, Jelsbak L. Evolutionary remodeling of global regulatory networks during long-term bacterial adaptation to human hosts. Proc Natl Acad Sci USA 2013; 110:7766–7771 [View Article][PubMed]
    [Google Scholar]
  37. Palmer KL, Mashburn LM, Singh PK, Whiteley M. Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 2005; 187:5267–5277 [View Article][PubMed]
    [Google Scholar]
  38. Son MS, Matthews WJ, Kang Y, Nguyen DT, Hoang TT. In vivo evidence of Pseudomonas aeruginosa nutrient acquisition and pathogenesis in the lungs of cystic fibrosis patients. Infect Immun 2007; 75:5313–5324 [View Article][PubMed]
    [Google Scholar]
  39. Grim KP, San Francisco B, Radin JN, Brazel EB, Kelliher JL et al. The metallophore staphylopine enables Staphylococcus aureus to compete with the host for zinc and overcome nutritional immunity. MBio 2017; 8:e01281-17 [View Article][PubMed]
    [Google Scholar]
  40. Gray RD, MacGregor G, Noble D, Imrie M, Dewar M et al. Sputum proteomics in inflammatory and suppurative respiratory diseases. Am J Respir Crit Care Med 2008; 178:444–452 [View Article][PubMed]
    [Google Scholar]
  41. Schulz S, Eckweiler D, Bielecka A, Nicolai T, Franke R et al. Elucidation of sigma factor-associated networks in Pseudomonas aeruginosa reveals a modular architecture with limited and function-specific crosstalk. PLoS Pathog 2015; 11:e1004744 [View Article][PubMed]
    [Google Scholar]
  42. Typas A, Hengge R. Role of the spacer between the -35 and -10 regions in sigmas promoter selectivity in Escherichia coli. Mol Microbiol 2006; 59:1037–1051 [View Article][PubMed]
    [Google Scholar]
  43. Furman R, Biswas T, Danhart EM, Foster MP, Tsodikov OV et al. DksA2, a zinc-independent structural analog of the transcription factor DksA. FEBS Lett 2013; 587:614–619 [View Article][PubMed]
    [Google Scholar]
  44. Blaby-Haas CE, Furman R, Rodionov DA, Artsimovitch I, de Crécy-Lagard V. Role of a Zn-independent DksA in Zn homeostasis and stringent response. Mol Microbiol 2011; 79:700–715 [View Article][PubMed]
    [Google Scholar]
  45. Herrero M, de Lorenzo V, Timmis KN. Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in gram-negative bacteria. J Bacteriol 1990; 172:6557–6567 [View Article][PubMed]
    [Google Scholar]
  46. Holloway BW, Morgan AF. Genome organization in Pseudomonas. Annu Rev Microbiol 1986; 40:79–105 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000687
Loading
/content/journal/micro/10.1099/mic.0.000687
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error