1887

Abstract

Directing the flow of protein traffic is a critical task faced by all cellular organisms. In Gram-negative bacteria, this traffic includes lipoproteins. Lipoproteins are synthesized as precursors in the cytoplasm and receive their acyl modifications upon export across the inner membrane. The third and final acyl chain is added by Lnt, which until recently was thought to be essential in all Gram-negatives. In this report, we show that Acinetobacter species can also tolerate a complete loss-of-function mutation in lnt. Absence of a fully functional Lnt impairs modification of lipoproteins, increases outer membrane permeability and susceptibility to antibiotics, and alters normal cellular morphology. In addition, we show that loss of lnt triggers a global transcriptional response to this added cellular stress. Taken together, our findings provide new insights on and support the growing revisions to the Gram-negative lipoprotein biogenesis paradigm.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000726
2018-10-11
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/164/12/1547.html?itemId=/content/journal/micro/10.1099/mic.0.000726&mimeType=html&fmt=ahah

References

  1. Silhavy TJ, Kahne D, Walker S. The bacterial cell envelope. Cold Spring Harb Perspect Biol 2010; 2:a000414 [View Article][PubMed]
    [Google Scholar]
  2. Ruiz N. Filling holes in peptidoglycan biogenesis of Escherichia coli. Curr Opin Microbiol 2016; 34:1–6 [View Article][PubMed]
    [Google Scholar]
  3. Okuda S, Sherman DJ, Silhavy TJ, Ruiz N, Kahne D. Lipopolysaccharide transport and assembly at the outer membrane: the PEZ model. Nat Rev Microbiol 2016; 14:337–345 [View Article][PubMed]
    [Google Scholar]
  4. Konovalova A, Silhavy TJ. Outer membrane lipoprotein biogenesis: Lol is not the end. Philos Trans R Soc Lond B Biol Sci 2015; 370:20150030 [View Article][PubMed]
    [Google Scholar]
  5. Botos I, Noinaj N, Buchanan SK. Insertion of proteins and lipopolysaccharide into the bacterial outer membrane. Philos Trans R Soc Lond B Biol Sci 2017; 372:20160224 [View Article][PubMed]
    [Google Scholar]
  6. Plummer AM, Fleming KG. From chaperones to the membrane with a BAM!. Trends Biochem Sci 2016; 41:872–882 [View Article][PubMed]
    [Google Scholar]
  7. Narita SI, Tokuda H. Bacterial lipoproteins; biogenesis, sorting and quality control. Biochim Biophys Acta 2017; 1862:1414–1423 [View Article][PubMed]
    [Google Scholar]
  8. Baba T, Ara T, Hasegawa M, Takai Y, Okumura Y et al. Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2006; 2:2006.0008 [View Article][PubMed]
    [Google Scholar]
  9. Narita S, Tokuda H. Overexpression of LolCDE allows deletion of the Escherichia coli gene encoding apolipoprotein N-acyltransferase. J Bacteriol 2011; 193:4832–4840 [View Article][PubMed]
    [Google Scholar]
  10. Lovullo ED, Wright LF, Isabella V, Huntley JF, Pavelka MS. Revisiting the Gram-negative lipoprotein paradigm. J Bacteriol 2015; 197:1705–1715 [View Article][PubMed]
    [Google Scholar]
  11. Moffatt JH, Harper M, Harrison P, Hale JD, Vinogradov E et al. Colistin resistance in Acinetobacter baumannii is mediated by complete loss of lipopolysaccharide production. Antimicrob Agents Chemother 2010; 54:4971–4977 [View Article][PubMed]
    [Google Scholar]
  12. Grabowicz M, Silhavy TJ. Redefining the essential trafficking pathway for outer membrane lipoproteins. Proc Natl Acad Sci USA 2017; 114:4769–4774 [View Article][PubMed]
    [Google Scholar]
  13. Sankaran K, Wu HC. Lipid modification of bacterial prolipoprotein. Transfer of diacylglyceryl moiety from phosphatidylglycerol. J Biol Chem 1994; 269:19701–19706[PubMed]
    [Google Scholar]
  14. Yamagata H, Taguchi N, Daishima K, Mizushima S. Genetic characterization of a gene for prolipoprotein signal peptidase in Escherichia coli. Mol Gen Genet 1983; 192:10–14 [View Article][PubMed]
    [Google Scholar]
  15. Gupta SD, Wu HC. Identification and subcellular localization of apolipoprotein N-acyltransferase in Escherichia coli. FEMS Microbiol Lett 1991; 62:37–41[PubMed]
    [Google Scholar]
  16. Yamaguchi K, Yu F, Inouye M. A single amino acid determinant of the membrane localization of lipoproteins in E. coli. Cell 1988; 53:423–432 [View Article][PubMed]
    [Google Scholar]
  17. Seydel A, Gounon P, Pugsley AP. Testing the '+2 rule' for lipoprotein sorting in the Escherichia coli cell envelope with a new genetic selection. Mol Microbiol 1999; 34:810–821 [View Article][PubMed]
    [Google Scholar]
  18. Narita S, Tokuda H. Amino acids at positions 3 and 4 determine the membrane specificity of Pseudomonas aeruginosa lipoproteins. J Biol Chem 2007; 282:13372–13378 [View Article][PubMed]
    [Google Scholar]
  19. Szewczyk J, Collet JF. The journey of lipoproteins through the cell: one birthplace, multiple destinations. Adv Microb Physiol 2016; 69:1–50 [View Article][PubMed]
    [Google Scholar]
  20. Narita S, Tokuda H. An ABC transporter mediating the membrane detachment of bacterial lipoproteins depending on their sorting signals. FEBS Lett 2006; 580:1164–1170 [View Article][PubMed]
    [Google Scholar]
  21. Taniguchi N, Tokuda H. Molecular events involved in a single cycle of ligand transfer from an ATP binding cassette transporter, LolCDE, to a molecular chaperone, LolA. J Biol Chem 2008; 283:8538–8544 [View Article][PubMed]
    [Google Scholar]
  22. Okuda S, Tokuda H. Model of mouth-to-mouth transfer of bacterial lipoproteins through inner membrane LolC, periplasmic LolA, and outer membrane LolB. Proc Natl Acad Sci USA 2009; 106:5877–5882 [View Article][PubMed]
    [Google Scholar]
  23. Konovalova A, Mitchell AM, Silhavy TJ. A lipoprotein/β-barrel complex monitors lipopolysaccharide integrity transducing information across the outer membrane. Elife 2016; 5:e15276 [View Article][PubMed]
    [Google Scholar]
  24. Harding CM, Hennon SW, Feldman MF. Uncovering the mechanisms of Acinetobacter baumannii virulence. Nat Rev Microbiol 2018; 16:91–102 [View Article][PubMed]
    [Google Scholar]
  25. Elliott KT, Neidle EL. Acinetobacter baylyi ADP1: transforming the choice of model organism. IUBMB Life 2011; 63:1075–1080 [View Article][PubMed]
    [Google Scholar]
  26. Gallagher LA, Ramage E, Weiss EJ, Radey M, Hayden HS et al. Resources for genetic and genomic analysis of emerging pathogen Acinetobacter baumannii. J Bacteriol 2015; 197:2027–2035 [View Article][PubMed]
    [Google Scholar]
  27. Aranda J, Poza M, Pardo BG, Rumbo S, Rumbo C et al. A rapid and simple method for constructing stable mutants of Acinetobacter baumannii. BMC Microbiol 2010; 10:279 [View Article][PubMed]
    [Google Scholar]
  28. Murin CD, Segal K, Bryksin A, Matsumura I. Expression vectors for Acinetobacter baylyi ADP1. Appl Environ Microbiol 2012; 78:280–283 [View Article][PubMed]
    [Google Scholar]
  29. Livak KJ, Schmittgen TD. Analysis of relative gene expression data using real-time quantitative PCR and the 2−ΔΔCT method. Methods 2001; 25:402–408 [View Article][PubMed]
    [Google Scholar]
  30. de Berardinis V, Vallenet D, Castelli V, Besnard M, Pinet A et al. A complete collection of single-gene deletion mutants of Acinetobacter baylyi ADP1. Mol Syst Biol 2008; 4:174 [View Article][PubMed]
    [Google Scholar]
  31. Ruiz N, Falcone B, Kahne D, Silhavy TJ. Chemical conditionality: a genetic strategy to probe organelle assembly. Cell 2005; 121:307–317 [View Article][PubMed]
    [Google Scholar]
  32. Stone KJ, Strominger JL. Mechanism of action of bacitracin: complexation with metal ion and C 55 -isoprenyl pyrophosphate. Proc Natl Acad Sci USA 1971; 68:3223–3227 [View Article][PubMed]
    [Google Scholar]
  33. Watanakunakorn C. Mode of action and in-vitro activity of vancomycin. J Antimicrob Chemother 1984; 14:7–18 [View Article][PubMed]
    [Google Scholar]
  34. Cozzarelli NR. The mechanism of action of inhibitors of DNA synthesis. Annu Rev Biochem 1977; 46:641–668 [View Article][PubMed]
    [Google Scholar]
  35. Hsuchen CC, Feingold DS. The mechanism of polymyxin B action and selectivity toward biologic membranes. Biochemistry 1973; 12:2105–2111 [View Article][PubMed]
    [Google Scholar]
  36. Gélis-Jeanvoine S, Lory S, Oberto J, Buddelmeijer N. Residues located on membrane-embedded flexible loops are essential for the second step of the apolipoprotein N-acyltransferase reaction. Mol Microbiol 2015; 95:692–705 [View Article][PubMed]
    [Google Scholar]
  37. Vidal-Ingigliardi D, Lewenza S, Buddelmeijer N. Identification of essential residues in apolipoprotein N-acyl transferase, a member of the CN hydrolase family. J Bacteriol 2007; 189:4456–4464 [View Article][PubMed]
    [Google Scholar]
  38. Senchenkova SN, Shashkov AS, Popova AV, Shneider MM, Arbatsky NP et al. Structure elucidation of the capsular polysaccharide of Acinetobacter baumannii AB5075 having the KL25 capsule biosynthesis locus. Carbohydr Res 2015; 408:8–11 [View Article][PubMed]
    [Google Scholar]
  39. Ricci DP, Silhavy TJ. The Bam machine: a molecular cooper. Biochim Biophys Acta 2012; 1818:1067–1084 [View Article][PubMed]
    [Google Scholar]
  40. Malinverni JC, Werner J, Kim S, Sklar JG, Kahne D et al. YfiO stabilizes the YaeT complex and is essential for outer membrane protein assembly in Escherichia coli. Mol Microbiol 2006; 61:151–164 [View Article][PubMed]
    [Google Scholar]
  41. MacDonald IA, Kuehn MJ. Stress-induced outer membrane vesicle production by Pseudomonas aeruginosa. J Bacteriol 2013; 195:2971–2981 [View Article][PubMed]
    [Google Scholar]
  42. Benjamini Y, Hochberg Y. On the adaptive control of the false discovery rate in multiple testing with independent statistics. J Educ Behav Stat 2000; 25:60–83 [View Article]
    [Google Scholar]
  43. Lorenz C, Dougherty TJ, Lory S. Transcriptional responses of Escherichia coli to a small-molecule inhibitor of LolCDE, an essential component of the lipoprotein transport pathway. J Bacteriol 2016; 198:3162–3175 [View Article][PubMed]
    [Google Scholar]
  44. Tao K, Narita S, Tokuda H. Defective lipoprotein sorting induces lolA expression through the Rcs stress response phosphorelay system. J Bacteriol 2012; 194:3643–3650 [View Article][PubMed]
    [Google Scholar]
  45. Narita S, Tanaka K, Matsuyama S, Tokuda H. Disruption of lolCDE, encoding an ATP-binding cassette transporter, is lethal for Escherichia coli and prevents release of lipoproteins from the inner membrane. J Bacteriol 2002; 184:1417–1422 [View Article][PubMed]
    [Google Scholar]
  46. Grabowicz M, Silhavy TJ. Envelope stress responses: an interconnected safety net. Trends Biochem Sci 2017; 42:232–242 [View Article][PubMed]
    [Google Scholar]
  47. Raivio TL. Everything old is new again: an update on current research on the Cpx envelope stress response. Biochim Biophys Acta 2014; 1843:1529–1541 [View Article][PubMed]
    [Google Scholar]
  48. Barchinger SE, Ades SE. Regulated proteolysis: control of the Escherichia coli σ(E)-dependent cell envelope stress response. Subcell Biochem 2013; 66:129–160 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000726
Loading
/content/journal/micro/10.1099/mic.0.000726
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error