1887

Abstract

Upstream open reading frames (ORFs) are frequently found in the 5′-flanking regions of genes and may have a regulatory role in gene expression. A small ORF (named cohL here) was identified upstream from the copAB copper operon in Xanthomonascitri subsp. citri (Xac). We previously demonstrated that copAB expression was induced by copper and that gene inactivation produced a mutant strain that was unable to grow in the presence of copper. Here, we address the role of cohL in copAB expression control. We demonstrate that cohL expression is induced by copper in a copAB-independent manner. Although cohL is transcribed, the CohL protein is either not expressed in vivo or is synthesized at undetectable levels. Inactivation of cohL ( X. citri cohL polar mutant strain) leads to an inability to synthesize cohL and copAB transcripts and consequently the inability to grow in the presence of copper. Bioinformatic tools predicted a stem–loop structure for the cohL–copAB intergenic region and revealed that this region may arrange itself in a secondary structure. Using in vitro gene expression, we found out that the structured 5′-UTR mRNA of copAB is responsible for sequestering the ribosome-binding site that drives the translation of copA. However, copper alone was not able to release the sequence. Based on the results, we speculate that cohL plays a role as a regulatory RNA rather than as a protein-coding gene.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000767
2019-01-28
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/3/355.html?itemId=/content/journal/micro/10.1099/mic.0.000767&mimeType=html&fmt=ahah

References

  1. Rademacher C, Masepohl B. Copper-responsive gene regulation in bacteria. Microbiology 2012; 158:2451–2464 [View Article][PubMed]
    [Google Scholar]
  2. Munson GP, Lam DL, Outten FW, O'Halloran TV. Identification of a copper-responsive two-component system on the chromosome of Escherichia coli K-12. J Bacteriol 2000; 182:5864–5871 [View Article][PubMed]
    [Google Scholar]
  3. Franke S, Grass G, Rensing C, Nies DH. Molecular analysis of the copper-transporting efflux system CusCFBA of Escherichia coli. J Bacteriol 2003; 185:3804–3812 [View Article][PubMed]
    [Google Scholar]
  4. Rensing C, Grass G. Escherichia coli mechanisms of copper homeostasis in a changing environment. FEMS Microbiol Rev 2003; 27:197–213 [View Article][PubMed]
    [Google Scholar]
  5. Outten FW, Outten CE, Hale J, O'Halloran TV. Transcriptional activation of an Escherichia coli copper efflux regulon by the chromosomal MerR homologue, cueR. J Biol Chem 2000; 275:31024–31029 [View Article][PubMed]
    [Google Scholar]
  6. Grass G, Rensing C. CueO is a multi-copper oxidase that confers copper tolerance in Escherichia coli. Biochem Biophys Res Commun 2001; 286:902–908 [View Article][PubMed]
    [Google Scholar]
  7. Brown NL, Barrett SR, Camakaris J, Lee BT, Rouch DA. Molecular genetics and transport analysis of the copper-resistance determinant (pco) from Escherichia coli plasmid pRJ1004. Mol Microbiol 1995; 17:1153–1166 [View Article][PubMed]
    [Google Scholar]
  8. Osman D, Cavet JS. Copper homeostasis in bacteria. Adv Appl Microbiol 2008; 65:217–247 [View Article][PubMed]
    [Google Scholar]
  9. Cooksey DA. Characterization of a copper resistance plasmid conserved in copper-resistant strains of pseudomonas syringae pv. Tomato. Appl Environ Microbiol 1987; 53:454–456[PubMed]
    [Google Scholar]
  10. Mellano MA, Cooksey DA. Nucleotide sequence and organization of copper resistance genes from Pseudomonas syringae pv. tomato. J Bacteriol 1988; 170:2879–2883 [View Article][PubMed]
    [Google Scholar]
  11. Lee YA, Hendson M, Panopoulos NJ, Schroth MN. Molecular cloning, chromosomal mapping, and sequence analysis of copper resistance genes from Xanthomonas campestris pv. juglandis: homology with small blue copper proteins and multicopper oxidase. J Bacteriol 1994; 176:173–188 [View Article][PubMed]
    [Google Scholar]
  12. Basim H, Minsavage GV, Stall RE, Wang JF, Shanker S et al. Characterization of a unique chromosomal copper resistance gene cluster from Xanthomonas campestris pv. vesicatoria. Appl Environ Microbiol 2005; 71:8284–8291 [View Article][PubMed]
    [Google Scholar]
  13. Mansfield J, Genin S, Magori S, Citovsky V, Sriariyanum M et al. Top 10 plant pathogenic bacteria in molecular plant pathology. Mol Plant Pathol 2012; 13:614–629 [View Article][PubMed]
    [Google Scholar]
  14. da Silva AC, Ferro JA, Reinach FC, Farah CS, Furlan LR et al. Comparison of the genomes of two Xanthomonas pathogens with differing host specificities. Nature 2002; 417:459–463 [View Article][PubMed]
    [Google Scholar]
  15. Teixeira EC, Franco de Oliveira JC, Marques Novo MT, Bertolini MC. The copper resistance operon copAB from Xanthomonas axonopodis pathovar citri: gene inactivation results in copper sensitivity. Microbiology 2008; 154:402–412 [View Article][PubMed]
    [Google Scholar]
  16. Behlau F, Canteros BI, Minsavage GV, Jones JB, Graham JH. Molecular characterization of copper resistance genes from Xanthomonas citri subsp. citri and Xanthomonas alfalfae subsp. citrumelonis. Appl Environ Microbiol 2011; 77:4089–4096 [View Article][PubMed]
    [Google Scholar]
  17. Voloudakis AE, Reignier TM, Cooksey DA. Regulation of resistance to copper in Xanthomonas axonopodis pv. vesicatoria. Appl Environ Microbiol 2005; 71:782–789 [View Article][PubMed]
    [Google Scholar]
  18. Simpson AJ, Reinach FC, Arruda P, Abreu FA, Acencio M et al. The genome sequence of the plant pathogen Xylella fastidiosa. The Xylella fastidiosa consortium of the organization for nucleotide sequencing and analysis. Nature 2000; 406:151–157 [View Article][PubMed]
    [Google Scholar]
  19. Potnis N, Krasileva K, Chow V, Almeida NF, Patil PB et al. Comparative genomics reveals diversity among xanthomonads infecting tomato and pepper. BMC Genomics 2011; 12:146 [View Article][PubMed]
    [Google Scholar]
  20. Schaad NW, Postnikova E, Lacy G, Sechler A, Agarkova I et al. Emended classification of xanthomonad pathogens on citrus. Syst Appl Microbiol 2006; 29:690–695 [View Article][PubMed]
    [Google Scholar]
  21. Sambrook J, Russell DW. Molecular Cloning a Laboratory Manual, 3rd ed. NY: Cold Spring Harbor Laboratory; 2001
    [Google Scholar]
  22. Ucci AP, Martins PMM, Lau IF, Bacci Jr M, Belasque Jr J et al. Asymetric chromosome segregation in Xanthomonas citri ssp. citri. Microbiol Open 2013
    [Google Scholar]
  23. Laemmli UK. Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 1970; 227:680–685 [View Article][PubMed]
    [Google Scholar]
  24. Hartree EF. Determination of protein: a modification of the Lowry method that gives a linear photometric response. Anal Biochem 1972; 48:422–427 [View Article][PubMed]
    [Google Scholar]
  25. Mills SD, Jasalavich CA, Cooksey DA. A two-component regulatory system required for copper-inducible expression of the copper resistance operon of Pseudomonas syringae. J Bacteriol 1993; 175:1656–1664 [View Article][PubMed]
    [Google Scholar]
  26. Pedrolli D, Langer S, Hobl B, Schwarz J, Hashimoto M et al. The ribB FMN riboswitch from Escherichia coli operates at the transcriptional and translational level and regulates riboflavin biosynthesis. FEBS J 2015; 282:3230–3242 [View Article][PubMed]
    [Google Scholar]
  27. Pedrolli DB, Matern A, Wang J, Ester M, Siedler K et al. A highly specialized flavin mononucleotide riboswitch responds differently to similar ligands and confers roseoflavin resistance to Streptomyces davawensis. Nucleic Acids Res 2012; 40:8662–8673 [View Article][PubMed]
    [Google Scholar]
  28. Zadeh JN, Steenberg CD, Bois JS, Wolfe BR, Pierce MB et al. NUPACK: analysis and design of nucleic acid systems. J Comput Chem 2011; 32:170–173 [View Article][PubMed]
    [Google Scholar]
  29. Navarro CA, von Bernath D, Martínez-Bussenius C, Castillo RA, Jerez CA. Cytoplasmic CopZ-like protein and periplasmic rusticyanin and AcoP proteins as possible copper resistance determinants in Acidithiobacillus ferrooxidans ATCC 23270. Appl Environ Microbiol 2016; 82:1015–1022 [View Article][PubMed]
    [Google Scholar]
  30. Rademacher C, Moser R, Lackmann JW, Klinkert B, Narberhaus F et al. Transcriptional and posttranscriptional events control copper-responsive expression of a Rhodobacter capsulatus multicopper oxidase. J Bacteriol 2012; 194:1849–1859 [View Article][PubMed]
    [Google Scholar]
  31. Furukawa K, Ramesh A, Zhou Z, Weinberg Z, Vallery T et al. Bacterial riboswitches cooperatively bind Ni2+ or Co2+ ions and control expression of heavy metal transporters. Mol Cell 2015; 57:1088–1098 [View Article][PubMed]
    [Google Scholar]
  32. Shi Y, Zhao G, Kong W. Genetic analysis of riboswitch-mediated transcriptional regulation responding to Mn2+ in Salmonella. J Biol Chem 2014; 289:11353–11366 [View Article][PubMed]
    [Google Scholar]
  33. Wedekind JE, Dutta D, Belashov IA, Jenkins JL. Metalloriboswitches: RNA-based inorganic ion sensors that regulate genes. J Biol Chem 2017; 292:9441–9450 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000767
Loading
/content/journal/micro/10.1099/mic.0.000767
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error