1887

Abstract

Catecholamine hormones enhance the virulence of pathogenic bacteria. Studies in the 1980s made intriguing observations that catecholamines were required for induction of sulfatase activity in many enteric pathogens, including Salmonella enterica serovar Typhimurium. In this report, we show that STM3122 and STM3124, part of horizontally acquired Salmonella pathogenesis island 13, encode a catecholamine-induced sulfatase and its regulator, respectively. Induction of sulfatase activity was independent of the well-studied QseBC and QseEF two-component regulatory systems. S. Typhimurium 14028S mutants lacking STM3122 or STM3124 showed reduced virulence in zebrafish. Because catecholamines are inactivated by sulfation in the mammalian gut, S. Typhimurium could utilize CA-induced sulfatase to access free catecholamines for growth and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000769
2019-01-16
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/3/302.html?itemId=/content/journal/micro/10.1099/mic.0.000769&mimeType=html&fmt=ahah

References

  1. Feasey NA, Dougan G, Kingsley RA, Heyderman RS, Gordon MA. Invasive non-typhoidal salmonella disease: an emerging and neglected tropical disease in Africa. Lancet 2012; 379:2489–2499 [View Article][PubMed]
    [Google Scholar]
  2. Ao TT, Feasey NA, Gordon MA, Keddy KH, Angulo FJ et al. Global burden of invasive nontyphoidal Salmonella disease, 2010(1). Emerg Infect Dis 2015; 21:941–949
    [Google Scholar]
  3. Andrews-Polymenis HL, Bäumler AJ, McCormick BA, Fang FC. Taming the elephant: Salmonella biology, pathogenesis, and prevention. Infect Immun 2010; 78:2356–2369 [View Article][PubMed]
    [Google Scholar]
  4. Larock DL, Chaudhary A, Miller SI. Salmonellae interactions with host processes. Nat Rev Microbiol 2015; 13:191–205 [View Article][PubMed]
    [Google Scholar]
  5. Steele-Mortimer O, Brumell JH, Knodler LA, Méresse S, Lopez A et al. The invasion-associated type III secretion system of Salmonella enterica serovar Typhimurium is necessary for intracellular proliferation and vacuole biogenesis in epithelial cells. Cell Microbiol 2002; 4:43–54 [View Article][PubMed]
    [Google Scholar]
  6. Lee AK, Detweiler CS, Falkow S. OmpR regulates the two-component system SsrA-ssrB in Salmonella pathogenicity island 2. J Bacteriol 2000; 182:771–781 [View Article][PubMed]
    [Google Scholar]
  7. Kato A, Groisman EA.Howard Hughes Medical Institute The PhoQ/PhoP regulatory network of Salmonella enterica. Adv Exp Med Biol 2008; 631:7–21[PubMed]
    [Google Scholar]
  8. Freestone PP, Sandrini SM, Haigh RD, Lyte M. Microbial endocrinology: how stress influences susceptibility to infection. Trends Microbiol 2008; 16:55–64 [View Article][PubMed]
    [Google Scholar]
  9. Karavolos MH, Winzer K, Williams P, Khan CM. Pathogen espionage: multiple bacterial adrenergic sensors eavesdrop on host communication systems. Mol Microbiol 2013; 87:455–465 [View Article][PubMed]
    [Google Scholar]
  10. Sperandio V, Torres AG, Jarvis B, Nataro JP, Kaper JB. Bacteria-host communication: the language of hormones. Proc Natl Acad Sci USA 2003; 100:8951–8956 [View Article][PubMed]
    [Google Scholar]
  11. Lustri BC, Sperandio V, Moreira CG. Bacterial chat: intestinal metabolites and signals in host-microbiota-pathogen interactions. Infect Immun 2017; 85:e0047617 [View Article][PubMed]
    [Google Scholar]
  12. Hughes DT, Sperandio V. Inter-kingdom signalling: communication between bacteria and their hosts. Nat Rev Microbiol 2008; 6:111–120 [View Article][PubMed]
    [Google Scholar]
  13. Hughes DT, Clarke MB, Yamamoto K, Rasko DA, Sperandio V. The QseC adrenergic signaling cascade in Enterohemorrhagic E. coli (EHEC). PLoS Pathog 2009; 5:e1000553 [View Article][PubMed]
    [Google Scholar]
  14. Freestone PP, Lyte M, Neal CP, Maggs AF, Haigh RD et al. The mammalian neuroendocrine hormone norepinephrine supplies iron for bacterial growth in the presence of transferrin or lactoferrin. J Bacteriol 2000; 182:6091–6098 [View Article][PubMed]
    [Google Scholar]
  15. Freestone P. Communication between bacteria and their hosts. Scientifica 2013; 2013:1–15 [View Article][PubMed]
    [Google Scholar]
  16. Henderson MJ, Milazzo FH. Arylsulfatase in Salmonella typhimurium: detection and influence of carbon source and tyramine on its synthesis. J Bacteriol 1979; 139:80–87[PubMed]
    [Google Scholar]
  17. Murooka Y, Harada T. Regulation of derepressed synthesis of arylsulfatase by tyramine oxidase in Salmonella typhimurium. J Bacteriol 1981; 145:796–802[PubMed]
    [Google Scholar]
  18. Adachi T, Murooka Y, Harada T. Regulation of arylsulfatase synthesis by sulfur compounds in Klebsiella aerogenes. J Bacteriol 1975; 121:29–35[PubMed]
    [Google Scholar]
  19. Azakami H, Sugino H, Yokoro N, Iwata N, Murooka Y. moaR, a gene that encodes a positive regulator of the monoamine regulon in Klebsiella aerogenes. J Bacteriol 1993; 175:6287–6292 [View Article][PubMed]
    [Google Scholar]
  20. Murooka Y, Yim MH, Harada T. Formation and purification of Serratia marcescens arylsulfatase. Appl Environ Microbiol 1980; 39:812–817[PubMed]
    [Google Scholar]
  21. Fitzgerald JW, Milazzo FH. Arylsulfatase multiplicity in Proteus rettgeri. Can J Microbiol 1970; 16:1109–1115 [View Article][PubMed]
    [Google Scholar]
  22. Kuchel O, Buu NT, Serri O. Sulfoconjugation of catecholamines, nutrition, and hypertension. Hypertension 1982; 4:93–98 [View Article][PubMed]
    [Google Scholar]
  23. Coughtrie MWH. Catecholamine sulfation in health and diseases. Adv Pharmacol 1997; 42:339–342
    [Google Scholar]
  24. Eisenhofer G, Coughtrie MW, Goldstein DS. Dopamine sulphate: an enigma resolved. Clin Exp Pharmacol Physiol Suppl 1999; 26:S41–53[PubMed]
    [Google Scholar]
  25. Das S, Singh S, McClelland M, Forst S, Gyaneshwar P. Characterization of an acid-inducible sulfatase in Salmonella enterica serovar typhimurium. Appl Environ Microbiol 2013; 79:2092–2095 [View Article][PubMed]
    [Google Scholar]
  26. Datsenko KA, Wanner BL. One-step inactivation of chromosomal genes in Escherichia coli K-12 using PCR products. Proc Natl Acad Sci USA 2000; 97:6640–6645 [View Article][PubMed]
    [Google Scholar]
  27. Guzman LM, Belin D, Carson MJ, Beckwith J. Tight regulation, modulation, and high-level expression by vectors containing the arabinose PBAD promoter. J Bacteriol 1995; 177:4121–4130 [View Article][PubMed]
    [Google Scholar]
  28. Schmieger H, Schicklmaier P. Transduction of multiple drug resistance of Salmonella enterica serovar typhimurium DT104. FEMS Microbiol Lett 1999; 170:251–256 [View Article][PubMed]
    [Google Scholar]
  29. Miller J. Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory Press; 1972 pp. 352–355
    [Google Scholar]
  30. Bradford MM. A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 1976; 72:248–254 [View Article][PubMed]
    [Google Scholar]
  31. Howlader DR, Sinha R, Nag D, Majumder N, Mukherjee P et al. Zebrafish as a novel model for non-typhoidal Salmonella pathogenesis, transmission and vaccine efficacy. Vaccine 2016; 34:5099–5106 [View Article][PubMed]
    [Google Scholar]
  32. Varas M, Ortíz-Severín J, Marcoleta AE, Díaz-Pascual F, Allende ML et al. Salmonella typhimurium induces cloacitis-like symptomsin zebrafish larvae. Microb Pathog 2017; 107:317–320 [View Article][PubMed]
    [Google Scholar]
  33. Udvadia AJ. 3.6 kb genomic sequence from Takifugu capable of promoting axon growth-associated gene expression in developing and regenerating zebrafish neurons. Gene Expr Patterns 2008; 8:382–388 [View Article][PubMed]
    [Google Scholar]
  34. Cheng HP, Walker GC. Succinoglycan is required for initiation and elongation of infection threads during nodulation of alfalfa by Rhizobium meliloti. J Bacteriol 1998; 180:5183–5191[PubMed]
    [Google Scholar]
  35. Hanson SR, Best MD, Wong C-H. Sulfatases: structure, mechanism, biological activity, inhibition, and synthetic utility. Angew Chem Int Ed Engl 2004; 43:5736–5763 [View Article]
    [Google Scholar]
  36. van der Sar AM, Musters RJ, van Eeden FJ, Appelmelk BJ, Vandenbroucke-Grauls CM et al. Zebrafish embryos as a model host for the real time analysis of Salmonella typhimurium infections. Cell Microbiol 2003; 5:601–611 [View Article][PubMed]
    [Google Scholar]
  37. Meijer AH, Spaink HP. Host-pathogen interactions made transparent with the zebrafish model. Curr Drug Targets 2011; 12:1000–1017 [View Article][PubMed]
    [Google Scholar]
  38. Shah DH, Lee MJ, Park JH, Lee JH, Eo SK et al. Identification of Salmonella gallinarum virulence genes in a chicken infection model using PCR-based signature-tagged mutagenesis. Microbiology 2005; 151:3957–3968 [View Article][PubMed]
    [Google Scholar]
  39. Desai PT, Porwollik S, Long F, Cheng P, Wollam A et al. Evolutionary genomics of Salmonella enterica subspecies. mBio 2013; 4:e0057912 [View Article][PubMed]
    [Google Scholar]
  40. Spencer H, Karavolos MH, Bulmer DM, Aldridge P, Chhabra SR et al. Genome-wide transposon mutagenesis identifies a role for host neuroendocrine stress hormones in regulating the expression of virulence genes in Salmonella. J Bacteriol 2010; 192:714–724 [View Article][PubMed]
    [Google Scholar]
  41. Chaudhuri RR, Morgan E, Peters SE, Pleasance SJ, Hudson DL et al. Comprehensive assignment of roles for Salmonella typhimurium genes in intestinal colonization of food-producing animals. PLoS Genet 2013; 9:e1003456 [View Article][PubMed]
    [Google Scholar]
  42. Elder JR, Chiok KL, Paul NC, Haldorson G, Guard J et al. The Salmonella pathogenicity island 13 contributes to pathogenesis in streptomycin pre-treated mice but not in day-old chickens. Gut Pathog 2016; 8:16 [View Article]
    [Google Scholar]
  43. O'Connor K, Fletcher SA, Csonka LN. Increased expression of Mg(2+) transport proteins enhances the survival of Salmonella enterica at high temperature. Proc Natl Acad Sci USA 2009; 106:17522–17527 [View Article][PubMed]
    [Google Scholar]
  44. Santiviago CA, Reynolds MM, Porwollik S, Choi SH, Long F et al. Analysis of pools of targeted Salmonella deletion mutants identifies novel genes affecting fitness during competitive infection in mice. PLoS Pathog 2009; 5:e1000477 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000769
Loading
/content/journal/micro/10.1099/mic.0.000769
Loading

Data & Media loading...

Supplements

Supplementary File 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error