1887

Abstract

The rationale of our bioprospecting campaigns is that the extremobiosphere, particularly the deep sea and hyper-arid deserts, harbours undiscovered biodiversity that is likely to express novel chemistry and biocatalysts thereby providing opportunities for therapeutic drug and industrial process development. We have focused on actinobacteria because of their frequent role as keystone species in soil ecosystems and their unrivalled track record as a source of bioactive compounds. Population numbers and diversity of actinobacteria in the extremobiosphere are traditionally considered to be low, although they often comprise the dominant bacterial biota. Recent metagenomic evaluation of ‘the uncultured microbial majority’ has now revealed enormous taxonomic diversity among ‘dark’ and ‘rare’ actinobacteria in samples as diverse as sediments from the depths of the Mariana Trench and soils from the heights of the Central Andes. The application of innovative culture and screening options that emphasize rigorous dereplication at each stage of the analysis, and strain prioritization to identify ‘gifted’ organisms, have been deployed to detect and characterize bioactive hit compounds and sought-after catalysts from this hitherto untapped resource. The rewards include first-in-a-class chemical entities with novel modes of action, as well as a growing microbial seed bank that represents a potentially enormous source of biotechnological and therapeutic innovation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.000822
2019-12-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/165/12/1252.html?itemId=/content/journal/micro/10.1099/mic.0.000822&mimeType=html&fmt=ahah

References

  1. Lynch MDJ, Neufeld JD. Ecology and exploration of the rare biosphere. Nat Rev Microbiol 2015; 13:217–229 [View Article]
    [Google Scholar]
  2. Rinke C, Schwientek P, Sczyrba A, Ivanova NN, Anderson IJ et al. Insights into the phylogeny and coding potential of microbial dark matter. Nature 2013; 499:431–437 [View Article]
    [Google Scholar]
  3. Goodfellow M. Phylum XXVI, Actinobacteria phyl.nov. In Goodfellow M, Kämpfer P, Busse HS, Trujillo ME, Suzuki K-I. (editors) Bergey’s Manual of Systematic Bacteriology, The Actinobacteria 5, 2nd ed. New York: Springer; 2012 pp 33–34
    [Google Scholar]
  4. Hug JJ, Bader CD, Remškar M, Cirnski K, Müller R. Concepts and methods to access novel antibiotics from actinomycetes. Antibiotics 2018; 7:44 [View Article]
    [Google Scholar]
  5. Bister B, Bischoff D, Ströbele M, Riedlinger J, Reicke A et al. Abyssomicin C-A polycyclic antibiotic from a marine Verrucosispora strain as an inhibitor of the p- aminobenzoic acid/tetrahydrofolate biosynthesis pathway. Angew Chem Int Ed 2004; 43:2574–2576 [View Article]
    [Google Scholar]
  6. Abdel-Mageed WM, Milne BF, Wagner M, Schumacher M, Sandor P et al. Dermacozines, a new phenazine family from deep-sea dermacocci isolated from a Mariana Trench sediment. Org Biomol Chem 2010; 8:2352–2362 [View Article]
    [Google Scholar]
  7. Wichner D, Idris H, Houssen WE, McEwan AR, Bull AT et al. Isolation and anti-HIV-1 integrase activity of lentzeosides A-F from extremotolerant Lentzea sp. H45, a strain isolated from a high-altitude Atacama desert soil. J Antibiot 2017; 70:448–453 [View Article]
    [Google Scholar]
  8. Bull AT. Actinobacteria of the extremobiosphere. In Horikoshi K. editor Extremophiles Handbook Vol 2 Tokyo: Springer; 2011 pp 1203–1240
    [Google Scholar]
  9. Stach JEM, Maldonado LA, Masson DG, Ward AC, Goodfellow M et al. Statistical approaches for estimating actinobacterial diversity in marine sediments. Appl Environ Microbiol 2003; 69:6189–6200 [View Article]
    [Google Scholar]
  10. Chun J, Rainey FA. Integrating genomics into the taxonomy and systematics of the Bacteria and archaea. Int J Syst Evol Microbiol 2014; 64:316–324 [View Article]
    [Google Scholar]
  11. Sangal V, Goodfellow M, Jones AL, Schwalbe EC, Blom J et al. Next-generation systematics: an innovative approach to resolve the structure of complex prokaryotic taxa. Sci Rep 2016; 6:38392 [View Article]
    [Google Scholar]
  12. Wayne LG, Moore WEC, Stackebrandt E, Kandler O, Colwell RR et al. Report of the ad hoc committee on reconciliation of approaches to bacterial Systematics. Int J Syst Evol Microbiol 1987; 37:463–464 [View Article]
    [Google Scholar]
  13. Chervin J, Stierhof M, Tong MH, Peace D, Hansen et al. Targeted Dereplication of microbial natural products by high-resolution MS and predicted LC retention time. J Nat Prod 2017; 80:1370–1377 [View Article]
    [Google Scholar]
  14. Anderson TR, Rice T. Deserts on the sea floor: Edward Forbes and his azoic hypothesis for a lifeless deep ocean. Endeavour 2006; 30:131–137 [View Article]
    [Google Scholar]
  15. Pathom-aree W et al. Dermacoccus abyssi sp. nov., a piezotolerant actinomycete isolated from the Mariana Trench. Int J Syst Evol Microbiol 2006a; 56:1233–1237 [View Article]
    [Google Scholar]
  16. Pathom-aree W, Nogi Y, Ward AC, Horikoshi K, Bull AT. Dermacoccus barathri sp. nov. and Dermacoccus profundi sp. nov., novel actinomycetes isolated from deep-sea mud of the Mariana Trench. Int J Syst Evol Microbiol 2006b; 56:2303–2307 [View Article]
    [Google Scholar]
  17. Chen P, Zhang L, Guo X, Dai X, Liu L et al. Diversity, biogeography, and biodegradation potential of actinobacteria in the deep-sea sediments along the Southwest Indian Ridge. Front Microbiol 2016; 7:1340 [View Article]
    [Google Scholar]
  18. Kamjam M, Sivalingam P, Deng Z, Hong K. Deep sea actinomycetes and their secondary metabolites. Front Microbiol 2017; 8:760 [View Article]
    [Google Scholar]
  19. Navarro-González R, Rainey FA, Molina P, Bagaley DR, Hollen BJ et al. Mars-like soils in the Atacama Desert, Chile, and the dry limit of microbial life. Science 2003; 302:1018–1021 [View Article]
    [Google Scholar]
  20. Cordero RR, Seckmeyer G, Damiani A, Riechelmann S, Rayas J et al. The world's highest levels of surface UV. Photochem Photobiol Sci 2014; 13:70–81 [View Article]
    [Google Scholar]
  21. Houston J. Evaporation in the Atacama Desert: an empirical study of spatio-temporal variations and their causes. J Hydrol 2006; 330:402–412 [View Article]
    [Google Scholar]
  22. Colquhoun JA, Heald SC, Li L, Tamaoka J, Kato C et al. Taxonomy and biotransformation activities of some deep-sea actinomycetes. Extremophiles 1998; 2:269–277 [View Article]
    [Google Scholar]
  23. Sangal V, Goodfellow M, Jones AL, Seviour RJ, Sutcliffe I. Refining systematics of the genus Rhodococcus based on whole genome analysis. In Alvarez HM. editor Biology of Rhodococcus 16, 2nd ed. Switzerland: Springer, Nature; 2019 pp 1–21
    [Google Scholar]
  24. Prieto-Davó A, Villarreal-Gómez LJ, Forschner-Dancause S, Bull AT, Stach JEM et al. Targeted search for actinomycetes from nearshore and deep-sea marine sediments. FEMS Microbiol Ecol 2013; 84:510–518 [View Article]
    [Google Scholar]
  25. Duncan K, Haltli B, Gill KA, Kerr RG. Bioprospecting from marine sediments of new Brunswick, Canada: exploring the relationship between total bacterial diversity and actinobacteria diversity. Marine Drugs 2014; 12:899–925 [View Article]
    [Google Scholar]
  26. Bull AT, Asenjo JA, Goodfellow M, Gómez-Silva B. The Atacama Desert: technical resources and the growing importance of novel microbial diversity. Annu Rev Microbiol 2016; 70:215–234 [View Article]
    [Google Scholar]
  27. Goodfellow M, Nouioui I, Sanderson R, Xie F, Bull AT. Rare taxa and dark microbial matter: novel bioactive actinobacteria abound in Atacama desert soils. Antonie van Leeuwenhoek 2018; 111:1315–1332 [View Article]
    [Google Scholar]
  28. Idris H, Goodfellow M, Sanderson R, Asenjo JA, Bull AT. Actinobacterial rare biospheres and dark matter revealed in habitats of the Chilean Atacama Desert. Sci Rep 2017; 7:8373 [View Article]
    [Google Scholar]
  29. Bull AT, Idris H, Sanderson R, Asenjo J, Andrews B et al. High altitude, hyper-arid soils of the Central-Andes harbor mega-diverse communities of actinobacteria. Extremophiles 2018; 22:47–57 [View Article]
    [Google Scholar]
  30. Shade A, Handelsman J. Beyond the Venn diagram: the hunt for a core microbiome. Environ Microbiol 2012; 14:4–12 [View Article]
    [Google Scholar]
  31. Schulz D, Beese P, Ohlendorf B, Erhard A, Zinecker H et al. Abenquines A-D: aminoquinone derivatives produced by Streptomyces sp. strain DB634. J Antibiot 2011; 64:763–768 [View Article]
    [Google Scholar]
  32. Boumehira AZ, El-Enshasy HA, Hacène H, Elsayed EA, Aziz R et al. Recent progress on the development of antibiotics from the genus Micromonospora . Biotechnol Bioproc E 2016; 21:199–223 [View Article]
    [Google Scholar]
  33. Baltz RH. Natural product drug discovery in the genomic era: realities, conjectures, misconceptions, and opportunities. J Ind Microbiol Biotechnol 2019; 46:281–299 [View Article]
    [Google Scholar]
  34. Sekurova ON, Schneider O, Zotchev SB. Novel bioactive natural products from bacteria via bioprospecting, genome mining and metabolic engineering. Microb Biotechnol 2019; 10: [View Article]
    [Google Scholar]
  35. Rateb ME, Hallyburton I, Houssen WE, Bull AT, Goodfellow M et al. Induction of diverse secondary metabolites in Aspergillus fumigatus by microbial co-culture. RSC Advances 2013; 3:14444–14450 [View Article]
    [Google Scholar]
  36. Wakefield J, Hassan HM, Jaspars M, Ebel R, Rateb ME. Dual induction of new microbial secondary metabolites by fungal bacterial co-cultivation. Front Microbiol 2017; 8:1284 [View Article]
    [Google Scholar]
  37. Parkes RJ. Methods for enriching, isolating, and analyzing microbial communities in laboratory systems. In Bull AT, Slater JH. (editors) Microbial Interactions and Communities London: Academic Press; 1982 pp 45–102
    [Google Scholar]
  38. Nicolaou KC, Chen JS, Dalby SM. From nature to the laboratory and into the clinic. Bioorg Med Chem 2009; 17:2290–2303 [View Article]
    [Google Scholar]
  39. Sadaka C, Ellsworth E, Hansen P, Ewin R, Damborg P et al. Review on abyssomicins: inhibitors of the chorismate pathway and folate biosynthesis. Molecules 2018; 23:1371 [View Article]
    [Google Scholar]
  40. Wagner M, Abdel-Mageed WM, Ebel R, Bull AT, Goodfellow M et al. Dermacozines H-J isolated from a deep-sea strain of Dermacoccus abyssi from Mariana Trench sediments. J Nat Prod 2014; 77:416–420 [View Article]
    [Google Scholar]
  41. Ghanta VR, Pasula A, Soma L, Raman B. Synthetic studies on dermacozines: first synthesis of dermacozines A, B and C. ChemistrySelect 2016; 1:1296–1299 [View Article]
    [Google Scholar]
  42. Rateb ME, Houssen WE, Arnold M, Abdelrahman MH, Deng H et al. Chaxamycins A-D, bioactive ansamycins from a hyper-arid desert Streptomyces sp. J Nat Prod 2011; 74:1491–1499 [View Article]
    [Google Scholar]
  43. Chen M, Roush WR. Crotylboron-based synthesis of the polypropionate units of chaxamycins A/D, salinisporamycin, and rifamycin S. J Org Chem 2013; 78:3–8 [View Article]
    [Google Scholar]
  44. Castro JF, Razmilic V, Gomez-Escribano JP, Andrews B, Asenjo JA et al. Identification and heterologous expression of the Chaxamycin biosynthesis gene cluster from Streptomyces leeuwenhoekii . Appl Environ Microbiol 2015; 81:5820–5831 [View Article]
    [Google Scholar]
  45. Elsayed SS, Trusch F, Deng H, Raab A, Prokes I et al. Chaxapeptin, a lasso peptide from extremotolerant Streptomyces leeuwenhoekii strain C58 from the Hyperarid Atacama Desert. J Org Chem 2015; 80:10252–10260 [View Article]
    [Google Scholar]
  46. Castro JF, Razmilic V, Gomez-Escribano JP, Andrews B, Asenjo J et al. The ‘gifted’ actinomycete Streptomyces leeuwenhoekii . Antonie van Leeuwenhoek 2018a; 111:1433–1448 [View Article]
    [Google Scholar]
  47. Castro JF, Nouioui I, Rahmani T, Sangal V, Montero-Calasanz M del C et al. Blastococcus atacamensis sp. nov., a new member of the family Geodermatophilaceae isolated from soil of extreme hyper-arid Yungay-region of the Atacama Desert, Chile. Int J Syst Evol 2018b; 68:2712–2721
    [Google Scholar]
  48. Carro L, Castro JF, Razmilic V, Nouioui I, Pan C et al. Uncovering the potential of novel micromonosporae isolated from an extreme hyper-arid Atacama desert soil. Sci Rep 2019; 9:4678 [View Article]
    [Google Scholar]
  49. Baltz RH. Gifted microbes for genome mining and natural product discovery. J Ind Microbiol Biotechnol 2017; 44:573–588 [View Article]
    [Google Scholar]
  50. Charlop-Powers Z, Owen JG, Reddy BVB, Ternei MA, Guimarães DO et al. Global biogeographic sampling of bacterial secondary metabolism. Elife 2015; 4:e05048 [View Article]
    [Google Scholar]
  51. Katz L, Baltz RH. Natural product discovery: past, present, and future. J Ind Microbiol Biotechnol 2016; 43:155–176 [View Article]
    [Google Scholar]
  52. Lodhi AF, Zhang Y, Adil M, Deng Y. Antibiotic discovery: combining isolation CHIP (iChip) technology and co-culture technique. Appl Microbiol Biotechnol 2018; 102:7333–7341 [View Article]
    [Google Scholar]
  53. Smanski MJ, Schlatter DC, Kinkel LL. Leveraging ecological theory to guide natural product discovery. J Ind Microbiol Biotechnol 2016; 43:115–128 [View Article]
    [Google Scholar]
  54. Strachan CR, Davies J. Antibiotics and evolution: food for thought. J Ind Microbiol Biotechnol 2016; 43:149–153 [View Article]
    [Google Scholar]
  55. McDonald BR, Currie CR. Lateral gene transfer dynamics in the ancient bacterial genes of Streptomyces . MBio 2017; 8:e00644–17 [View Article]
    [Google Scholar]
  56. van der Meij A, Worsley SF, Hutchings MI, van Wezel GP. Chemical ecology of antibiotic production by actinomycetes. FEMS Microbiol Rev 2017; 41:392–416 [View Article]
    [Google Scholar]
  57. Ian E, Malko DB, Sekurova ON, Bredholt H, Rückert C et al. Genomics of sponge –associated Streptomyces spp. closely related to Streptomyces albus J1074: insights into marine adaptation and secondary metabolite biosynthesis potential. PLoS One 2014; 9:e96719 [View Article]
    [Google Scholar]
  58. Ziemert N, Lechner A, Wietz M, Millan-Aguinaga N, Chavarria KL et al. Diversity and evolution of secondary metabolism in the marine actinomycete genus Salinispora . Proc Natl Acad Sci USA 2014; 111:E1130–E1139 [View Article]
    [Google Scholar]
  59. Rateb ME, Ebel R, Jaspars M. Natural product diversity of actinobacteria in the Atacama Desert. Antonie van Leeuwenhoek 2018; 111:1467–1477 [View Article]
    [Google Scholar]
  60. Parkes RJ, Cragg BA, Wellsbury P. Recent studies on bacterial populations and processes in subseafloor sediments: a review. Hydrogeol J 2000; 8:11–28 [View Article]
    [Google Scholar]
  61. Roussel EG, Bonavita MA, Querellou J, Cragg BA, Webster G et al. Extending the sub-sea-floor biosphere. Science 2008; 320:1046 [View Article]
    [Google Scholar]
  62. Fry JC, Horsfield B, Sykes R, Cragg BA, Heywood C, Cragg HC et al. Prokaryotic populations and activities in an interbedded coal deposit, including a previously deeply buried section (1.6–2.3 Km) above ∼ 150 MA basement rock. Geomicrobiol J 2009; 26:163–178 [View Article]
    [Google Scholar]
  63. Lynch RC, King AJ, Farías ME, Sowell P, Vitry C et al. The potential for microbial life in the highest-elevation (>6000 m.a.s.l.) mineral soils of the Atacama region. J. Geophys. Res. 2012; 117:n/a [View Article]
    [Google Scholar]
  64. Schmidt SK, Gendron EMS, Vincent K, Solon AJ, Sommers P et al. Life at extreme elevations on Atacama volcanoes: the closest thing to Mars on earth?. Antonie van Leeuwenhoek 2018; 111:1389–1401 [View Article]
    [Google Scholar]
  65. Gomez-Escribano JP, Castro JF, Razmilic V, Chandra G, Andrews B et al. The Streptomyces leeuwenhoekii genome: de novo sequencing and assembly in single contigs of the chromosome, circular plasmid pSLE1 and linear plasmid pSLE2. BMC Genomics 2015; 16:485 [View Article]
    [Google Scholar]
  66. Takai K. New frontiers: deep biosphere. Physiology. In Horikoshi Koki. editor Extremophiles Handbook 2 Tokyo: Springer; 2011 pp 1044–1081
    [Google Scholar]
  67. McVeigh HP, Munro J, Embley TM. Molecular evidence for the presence of novel actinomycete lineages in a temperate forest soil. J Ind Microbiol 1996; 17:197–204 [View Article]
    [Google Scholar]
  68. Hill P, Piel J, Aris-Brosou S, Krištůfek V, Boddy CN et al. Habitat-specific type I polyketide synthases in soils and street sediments. J Ind Microbiol Biotechnol 2014; 41:75–85 [View Article]
    [Google Scholar]
  69. Low ZJ, Pang LM, Ding Y, Cheang QW, Le Mai Hoang K et al. Identification of a biosynthetic gene cluster for the polyene macrolactam sceliphrolactam in a Streptomyces strain isolated from mangrove sediment. Sci Rep 2018; 8:1594 [View Article]
    [Google Scholar]
  70. Xie S, Lan Y, Sun C, Shao Y. Insect microbial symbionts as a novel source for biotechnology. World J Microbiol Biotechnol 2019; 35:25 [View Article]
    [Google Scholar]
  71. Blockley A, Elliott DR, Roberts AP, Sweet M. Symbiotic microbes from marine invertebrates: driving a new era of natural product drug discovery. Diversity 2017; 9:49 [View Article]
    [Google Scholar]
  72. Bai L, Liu C, Guo L, Piao C, Li Z et al. Streptomyces formicae sp. nov., a novel actinomycete isolated from the head of Ca mponotus japonicus Mayr. Antonie van Leeuwenhoek 2016; 109:253–261 [View Article]
    [Google Scholar]
  73. Qin Z, Munnoch JT, Devine R, Holmes NA, Seipke RF et al. Formicamycins, antibacterial polyketides produced by Streptomyces formicae isolated from African Tetraponera plant-ants. Chem Sci 2017; 8:3218–3227 [View Article]
    [Google Scholar]
  74. de Wit R, Bouvier T. 'Everything is everywhere, but, the environment selects'; what did Baas Becking and Beijerinck really say?. Environ Microbiol 2006; 8:755–758 [View Article]
    [Google Scholar]
  75. Cho JC, Tiedje JM. Biogeography and degree of endemicity of fluorescent Pseudomonas strains in soil. Appl Environ Microbiol 2000; 66:5448–5456 [View Article]
    [Google Scholar]
  76. Schlatter DC, Kinkel LL. Global biogeography of Streptomyces antibiotic inhibition, resistance, and resource use. FEMS Microbiol Ecol 2014; 88:386–397 [View Article]
    [Google Scholar]
  77. Andam CP, Doroghazi JR, Campbell AN, Kelly PJ, Choudoir MJ et al. A latitudinal diversity gradient in terrestrial bacteria of the genus Streptomyces . MBio 2016; 7:e02200–02215 [View Article]
    [Google Scholar]
  78. Arocha-Garza HF, Canales-Del Castillo R, Eguiarte LE, Souza V, De la Torre-Zavala S. High diversity and suggested endemicity of culturable actinobacteria in an extremely oligotrophic desert OASIS. PeerJ 2017; 5:e3247 [View Article]
    [Google Scholar]
  79. Bull AT, Goodfellow M, Slater JH. Biodiversity as a source of innovation in biotechnology. Annu Rev Microbiol 1992; 46:219–246 [View Article]
    [Google Scholar]
  80. Ward AC, Goodfellow M. Physiology and functionality: taxonomy as a roadmap to genes. In Bull AT. editor Microbial Diversity and Bioprospecting Washington, DC: ASM Press; 2004 pp 288–313
    [Google Scholar]
  81. Goodfellow M, Fiedler HP. A guide to successful bioprospecting: informed by actinobacterial Systematics. Antonie Van Leeuwenhoek 2010; 98:119–142 [View Article]
    [Google Scholar]
  82. Nouioui I, Carro L, García-López M, Meier-Kolthoff JP, Woyke T et al. Genome-based taxonomic classification of the phylum Actinobacteria . Front Microbiol 2018; 9:2007 [View Article]
    [Google Scholar]
  83. Adamek M, Alanjary M, Sales-Ortells H, Goodfellow M, Bull AT et al. Comparative genomics reveals phylogenetic distribution patterns of secondary metabolites in Amycolatopsis species. BMC Genomics 2018; 19:426 [View Article]
    [Google Scholar]
  84. Idris H, Nouioui I, Pathom-aree W, Castro JF, Bull AT et al. Amycolatopsis vastitatis sp. nov., an isolate from a high altitude subsurface soil on Cerro Chajnantor, Northern Chile. Antonie van Leeuwenhoek 2018; 111:1523–1533 [View Article]
    [Google Scholar]
  85. Carro L, Nouioui I, Sangal V, Meier-Kolthoff JP, Trujillo ME et al. Genome-based classification of micromonosporae with a focus on their biotechnological and ecological potential. Sci Rep 2018; 8:525 [View Article]
    [Google Scholar]
  86. World Health Organization (2015) WHO Model List of essential medicines. http://www.who.int/medicines/publications/essential medicines/en/
  87. Carro L, Razmilic V, Nouioui I, Richardson L, Pan C et al. Hunting for cultivable Micromonospora strains in soils of the Atacama Desert. Antonie van Leeuwenhoek 2018; 111:1375–1387 [View Article]
    [Google Scholar]
  88. Zhang JJ, Moore BS. Digging for biosynthetic dark matter. eLife 2015; 4:e06453 [View Article]
    [Google Scholar]
  89. Baral B, Akhgari A, Metsä-Ketelä M. Activation of microbial secondary metabolic pathways: avenues and challenges. Syn Syst Biotech 2018; 3:163–178 [View Article]
    [Google Scholar]
  90. Okoro CK, Brown R, Jones AL, Andrews BA, Asenjo JA et al. Diversity of culturable actinomycetes in hyper-arid soils of the Atacama Desert, Chile. Antonie van Leeuwenhoek 2009; 95:121–133 [View Article]
    [Google Scholar]
  91. Busarakam K, Bull AT, Girard G, Labeda DP, van Wezel GP et al. Streptomyces leeuwenhoekii sp. nov., the producer of chaxalactins and chaxamycins, forms a distinct branch in Streptomyces gene trees. Antonie van Leeuwenhoek 2014; 105:849–861 [View Article]
    [Google Scholar]
  92. Park CJ, Andam CP. Within-species genomic variation and variable patterns of recombination in the tetracycline producer Streptomyces rimosus . Front Microbiol 2019; 10: [View Article]
    [Google Scholar]
  93. Meier-Kolthoff JP, Hahnke RL, Petersen J, Scheuner C, Michael V et al. Complete genome sequence of DSM 30083T, the type strain (U5/41T) of Escherichia coli, and a proposal for delineating subspecies in microbial taxonomy. Stand Genomic Sci 2014; 9:2 [View Article]
    [Google Scholar]
  94. Kumar Y, Goodfellow M. Reclassification of Streptomyces hygroscopicus strains as Streptomyces aldersoniae sp. nov., Streptomyces angustmyceticus sp. nov., comb. nov., Streptomyces ascomycinicus sp. nov., Streptomyces decoyicus sp. nov., comb. nov., Streptomyces milbemycinicus sp. nov. and Streptomyces wellingtoniae sp. nov. Int J Syst Evol Microbiol 2010; 60:769–775 [View Article]
    [Google Scholar]
  95. Lebeda DP. DNA relatedness among strains of the Streptomyces lavendulae phenotypic cluster group. Int J Syst Evol Microbiol 1993; 43:822–825 [View Article]
    [Google Scholar]
  96. Antony-Babu S, Stach JEM, Goodfellow M. Genetic and phenotypic evidence for Streptomyces griseus ecovers isolated from a beach dune sand system. Antonie van Leewenhoek 2008; 94:62–64
    [Google Scholar]
  97. Floros DJ, Jensen PR, Dorrestein PC, Koyama N. A metabolomics guided exploration of marine natural product chemical space. Metabolomics 2016; 12:145 [View Article]
    [Google Scholar]
  98. Bull AT, Stach JEM. Marine actinobacteria: new opportunities for natural product search and discovery. Trends Microbiol 2007; 15:491–499 [View Article]
    [Google Scholar]
  99. Yan X, Ge H, Huang T, Hindra YD, Yang D et al. Strain prioritization and genome mining for enediyne natural products. mBio 2016; 7:e02104–02116 [View Article]
    [Google Scholar]
  100. Horikoshi K. ed Extremophiles Handbook s 1 and 2 Tokyo: Springer; 2011 pp pp 1–1247
    [Google Scholar]
  101. Nouioui I, Cortez al bayay C, Carro L, Sangal V, Castro JF et al. What is the potential of Frankia strains in promoting plant growth?. Front Microbiol in press 2019
    [Google Scholar]
  102. Azua-Bustos A, Fairén AG, González-Silva C, Ascaso C, Carrizo D et al. Unprecedented rains decimate surface microbial communities in the hyperarid core of the Atacama Desert. Sci Rep 2018; 8:16706 [View Article]
    [Google Scholar]
  103. Cockell CS, Jones HL. Advancing the case for microbial conservation. Oryx 2009; 43:520–526 [View Article]
    [Google Scholar]
  104. Roh H, Uguru GC, Ko HJ, Kim S, Kim B-Y et al. Genome sequence of the abyssomicin- and proximicin-producing marine actinomycete Verrucosispora maris AB-18-032. J Bacteriol 2011; 193:3391–3392 [View Article]
    [Google Scholar]
  105. Olano C, Cano-Prieto C, Losada AA, Bull AT, Goodfellow M et al. Draft genome sequence of marine actinomycete Streptomyces sp. strain NTK 937, producer of the benzoxazole antibiotic Caboxamycin. Genome Announc 2014; 2:e00534–14 [View Article]
    [Google Scholar]
  106. Busarakam K, Bull AT, Trujillo ME, Riesco R, Sangal V et al. Modestobacter caceresii sp. actinomycete isolated from the extreme hyper-arid core of the Atacama Desert. Syst Appl Microbiol 2016; 39:243–251
    [Google Scholar]
  107. Castro JF, Nouioui I, Sangal V, Trujillo ME, Montero-Calasanz MDC et al. Geodermatophilus chilensis sp. nov., from soil of the Yungay core-region of the Atacama Desert, Chile. Syst Appl Microbiol 2018c; 41:427–436 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.000822
Loading
/content/journal/micro/10.1099/mic.0.000822
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error