1887

Abstract

Plasmids, extrachromosomal DNA molecules commonly found in bacterial and archaeal cells, play an important role in bacterial genetics and evolution. Our understanding of plasmid biology has been furthered greatly by the development of mathematical models, and there are many questions about plasmids that models would be useful in answering. In this review, we present an introductory, yet comprehensive, overview of the biology of plasmids suitable for modellers unfamiliar with plasmids who want to get up to speed and to begin working on plasmid-related models. In addition to reviewing the diversity of plasmids and the genes they carry, their key physiological functions, and interactions between plasmid and host, we also highlight selected plasmid topics that may be of particular interest to modellers and areas where there is a particular need for theoretical development. The world of plasmids holds a great variety of subjects that will interest mathematical biologists, and introducing new modellers to the subject will help to expand the existing body of plasmid theory.

Funding
This study was supported by the:
  • Deutsche Forschungsgemeinschaft (Award 400993799)
    • Principle Award Recipient: HildegardUecker
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001362
2023-07-28
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/7/mic001362.html?itemId=/content/journal/micro/10.1099/mic.0.001362&mimeType=html&fmt=ahah

References

  1. Dewan I, Uecker H. A mathematician’s guide to plasmids: an introduction to plasmid biology for modellers. Figshare 2023 [View Article]
    [Google Scholar]
  2. Summers DK. The Biology of Plasmids Oxford: Blackwell Science; 1996
    [Google Scholar]
  3. Falkow S. Infectious Multiple Drug Resistance London: Pion; 1975
    [Google Scholar]
  4. Carattoli A. Plasmids and the spread of resistance. Int J Med Microbiol 2013; 303:298–304 [View Article] [PubMed]
    [Google Scholar]
  5. Lederberg J. Cell genetics and hereditary symbiosis. Physiol Rev 1952; 32:403–430 [View Article] [PubMed]
    [Google Scholar]
  6. Helinski DR. A brief history of plasmids. EcoSal Plus 2022; 10:eESP00282021 [View Article] [PubMed]
    [Google Scholar]
  7. Hernández-Beltrán JCR, San Millán A, Fuentes-Hernández A, Peña-Miller R. Mathematical models of plasmid population dynamics. Front Microbiol 2021; 12:606396 [View Article] [PubMed]
    [Google Scholar]
  8. Rodríguez-Beltrán J, DelaFuente J, León-Sampedro R, MacLean RC, San Millán Á. Beyond horizontal gene transfer: the role of plasmids in bacterial evolution. Nat Rev Microbiol 2021; 19:347–359 [View Article]
    [Google Scholar]
  9. Hall JPJ, Harrison E, Baltrus DA. Introduction: the secret lives of microbial mobile genetic elements. Phil Trans R Soc B 2022; 377: [View Article]
    [Google Scholar]
  10. Fernandez-Lopez R, Redondo S, Garcillan-Barcia MP, de la Cruz F. Towards a taxonomy of conjugative plasmids. Curr Opin Microbiol 2017; 38:106–113 [View Article] [PubMed]
    [Google Scholar]
  11. Garcillán-Barcia MP, Alvarado A, de la Cruz F. Identification of bacterial plasmids based on mobility and plasmid population biology. FEMS Microbiol Rev 2011; 35:936–956 [View Article]
    [Google Scholar]
  12. Hülter N, Ilhan J, Wein T, Kadibalban AS, Hammerschmidt K et al. An evolutionary perspective on plasmid lifestyle modes. Curr Opin Microbiol 2017; 38:74–80 [View Article] [PubMed]
    [Google Scholar]
  13. Bennett PM. Plasmid encoded antibiotic resistance: acquisition and transfer of antibiotic resistance genes in bacteria. Br J Pharmacol 2008; 153 Suppl 1:S347–57 [View Article] [PubMed]
    [Google Scholar]
  14. Gama JA, Zilhão R, Dionisio F. Impact of plasmid interactions with the chromosome and other plasmids on the spread of antibiotic resistance. Plasmid 2018; 99:82–88 [View Article] [PubMed]
    [Google Scholar]
  15. Zwanzig M. The ecology of plasmid-coded antibiotic resistance: a basic framework for experimental research and modeling. Comput Struct Biotechnol J 2021; 19:586–599 [View Article] [PubMed]
    [Google Scholar]
  16. Martin Iain B. Horizontal gene transfer. In Gogarten MB, Gogarten JP, Olendzenski L. eds Methods in Molecular Biology 532 vol 5 2009 pp 73–102
    [Google Scholar]
  17. Bingle LEH, Thomas CM. Regulatory circuits for plasmid survival. Curr Opin Microbiol 2001; 4:194–200 [View Article] [PubMed]
    [Google Scholar]
  18. del Solar G, Espinosa M. Plasmid copy number control: an ever-growing story. Mol Microbiol 2000; 37:492–500 [View Article] [PubMed]
    [Google Scholar]
  19. del Solar G, Giraldo R, Ruiz-Echevarría MJ, Espinosa M, Díaz-Orejas R. Replication and control of circular bacterial plasmids. Microbiol Mol Biol Rev 1998; 62:434–464 [View Article]
    [Google Scholar]
  20. Novick RP. Plasmid incompatibility. Microbiol Rev 1987; 51:381–395 [View Article] [PubMed]
    [Google Scholar]
  21. Zielenkiewicz U, Cegłowski P. Mechanisms of plasmid stable maintenance with special focus on plasmid addiction systems. Acta Biochim Pol 2001; 48:1003–1023 [View Article]
    [Google Scholar]
  22. Dionisio F, Zilhão R, Gama JA. Interactions between plasmids and other mobile genetic elements affect their transmission and persistence. Plasmid 2019; 102:29–36 [View Article]
    [Google Scholar]
  23. Garcillán-Barcia MP, de la Cruz F. Why is entry exclusion an essential feature of conjugative plasmids?. Plasmid 2008; 60:1–18 [View Article]
    [Google Scholar]
  24. Getino M, de la Cruz F, Baquero F, Bouza E, Gutiérrez-Fuentes JA. Natural and artificial strategies to control the conjugative transmission of plasmids. Microbiol Spectr 2018; 6:1 [View Article] [PubMed]
    [Google Scholar]
  25. San Millan A, MacLean RC. Fitness costs of plasmids: a limit to plasmid transmission. In Baquero F. ed Microbial Transmission Chap 4 Washington, DC: ASM Press; 2019 pp 65–79
    [Google Scholar]
  26. Vial L, Hommais F. Plasmid-chromosome cross-talks. Environ Microbiol 2020; 22:540–556 [View Article] [PubMed]
    [Google Scholar]
  27. Kiyosawa H, Hughes JE, Podgorski GJ, Welker DL. Small circular plasmids of the eukaryote Dictyostelium purpureum define two novel plasmid families. Plasmid 1993; 30:106–118 [View Article] [PubMed]
    [Google Scholar]
  28. Qin H, Welker DL, Youssef NN. Isolation and characterization of a linear plasmid from the entomopathogenic fungus Ascosphaera apis. Plasmid 1993; 29:19–30 [View Article] [PubMed]
    [Google Scholar]
  29. Silliker ME, Cummings DJ. A mitochondrial DNA rearrangement and three new mitochondrial plasmids from long-lived strains of Podospora anserina. Plasmid 1990; 24:37–44 [View Article]
    [Google Scholar]
  30. Shintani M, Sanchez ZK, Kimbara K. Genomics of microbial plasmids: classification and identification based on replication and transfer systems and host taxonomy. Front Microbiol 2015; 6:242 [View Article] [PubMed]
    [Google Scholar]
  31. Smillie C, Garcillán-Barcia MP, Francia MV, Rocha EPC, de la Cruz F. Mobility of plasmids. Microbiol Mol Biol Rev 2010; 74:434–452 [View Article] [PubMed]
    [Google Scholar]
  32. Coluzzi C, Garcillán-Barcia MP, de la Cruz F, Rocha EPC. Evolution of plasmid mobility: origin and fate of conjugative and nonconjugative plasmids. Mol Biol Evol 2022; 39:6 [View Article] [PubMed]
    [Google Scholar]
  33. Ares-Arroyo M, Coluzzi C, Rocha EPC. Origins of transfer establish networks of functional dependencies for plasmid transfer by conjugation. Nucleic Acids Res 2023; 51:3001–3016 [View Article] [PubMed]
    [Google Scholar]
  34. Hall JPJ, Botelho J, Cazares A, Baltrus DA. What makes a megaplasmid?. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200472 [View Article] [PubMed]
    [Google Scholar]
  35. Ravin NV. N15: the linear phage–plasmid. Plasmid 2011; 65:102–109 [View Article]
    [Google Scholar]
  36. Chen CW, Yu T-W, Lin Y-S, Kieser HM, Hopwood DA. The conjugative plasmid SLP2 of Streptomyces lividans is a 50 kb linear molecule. Mol Microbiol 1993; 7:925–932 [View Article]
    [Google Scholar]
  37. Casjens S, Palmer N, van Vugt R, Huang WM, Stevenson B et al. A bacterial genome in flux: the twelve linear and nine circular extrachromosomal DNAs in an infectious isolate of the Lyme disease spirochete Borrelia burgdorferi. Mol Microbiol 2000; 35:490–516 [View Article] [PubMed]
    [Google Scholar]
  38. Ventura M, Canchaya C, Tauch A, Chandra G, Fitzgerald GF et al. Genomics of Actinobacteria: tracing the evolutionary history of an ancient phylum. Microbiol Mol Biol Rev 2007; 71:495–548 [View Article] [PubMed]
    [Google Scholar]
  39. Novick RP, Clowes RC, Cohen SN, Curtiss R 3rd, Datta N et al. Uniform nomenclature for bacterial plasmids: a proposal. Bacteriol Rev 1976; 40:168–189 [View Article] [PubMed]
    [Google Scholar]
  40. Chabbert YA, Roussel A. Taxonomy and epidemiology of R plasmids as molecular species. J Antimicrob Chemother 1977; 3 Suppl C:25–33 [View Article] [PubMed]
    [Google Scholar]
  41. Sýkora P. Macroevolution of plasmids: a model for plasmid speciation. J Theor Biol 1992; 159:53–65 [View Article] [PubMed]
    [Google Scholar]
  42. Petersen J. Phylogeny and compatibility: plasmid classification in the genomics era. Arch Microbiol 2011; 193:313–321 [View Article]
    [Google Scholar]
  43. Garcillán-Barcia MP, Francia MV, de la Cruz F. The diversity of conjugative relaxases and its application in plasmid classification. FEMS Microbiol Rev 2009; 33:657–687 [View Article]
    [Google Scholar]
  44. Francia MV, Varsaki A, Garcillán-Barcia MP, Latorre A, Drainas C et al. A classification scheme for mobilization regions of bacterial plasmids. FEMS Microbiol Rev 2004; 28:79–100 [View Article] [PubMed]
    [Google Scholar]
  45. Redondo-Salvo S, Fernández-López R, Ruiz R, Vielva L, de Toro M et al. Pathways for horizontal gene transfer in bacteria revealed by a global map of their plasmids. Nat Commun 2020; 11:3602 [View Article] [PubMed]
    [Google Scholar]
  46. Redondo-Salvo S, Bartomeus-Peñalver R, Vielva L, Tagg KA, Webb HE et al. COPLA, a taxonomic classifier of plasmids. BMC Bioinformatics 2021; 22:390 [View Article] [PubMed]
    [Google Scholar]
  47. Garcillán-Barcia MP, Redondo-Salvo S, de la Cruz F. Plasmid classifications. Plasmid 2023; 126:102684 [View Article]
    [Google Scholar]
  48. Kollek R, Oertel W, Goebel W. Isolation and characterization of the minimal fragment required for autonomous replication (“Basic replicon”) of a copy mutant (pKN102) of the antibiotic resistance factor R1. Molec Gen Genet 1978; 162:51–57 [View Article]
    [Google Scholar]
  49. Burian J, Guller L, Macor M, Kay WW. Small cryptic plasmids of multiplasmid, clinical Escherichia coli. Plasmid 1997; 37:2–14 [View Article] [PubMed]
    [Google Scholar]
  50. Zaleski P, Wolinowska R, Strzezek K, Lakomy A, Plucienniczak A. The complete sequence and segregational stability analysis of a new cryptic plasmid pIGWZ12 from a clinical strain of Escherichia coli. Plasmid 2006; 56:228–232 [View Article] [PubMed]
    [Google Scholar]
  51. Moran RA, Hall RM. pBuzz: a cryptic rolling-circle plasmid from a commensal Escherichia coli has two inversely oriented oriTs and is mobilised by A B/O plasmid. Plasmid 2019; 101:10–19 [View Article] [PubMed]
    [Google Scholar]
  52. Wang Y, Batra A, Schulenburg H, Dagan T. Gene sharing among plasmids and chromosomes reveals barriers for antibiotic resistance gene transfer. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200467 [View Article] [PubMed]
    [Google Scholar]
  53. Silver S. Plasmid-determined metal resistance mechanisms: range and overview. Plasmid 1992; 27:1–3 [View Article] [PubMed]
    [Google Scholar]
  54. Kothari A, Wu Y-W, Chandonia J-M, Charrier M, Rajeev L et al. Large circular plasmids from groundwater plasmidomes span multiple incompatibility groups and are enriched in multimetal resistance genes. mBio 2019; 10:e02899-18 [View Article] [PubMed]
    [Google Scholar]
  55. Mukhtar S, Ahmad S, Bashir A, Mehnaz S, Mirza MS et al. Identification of plasmid encoded osmoregulatory genes from halophilic bacteria isolated from the rhizosphere of halophytes. Microbiol Res 2019; 228:126307 [View Article] [PubMed]
    [Google Scholar]
  56. Palomino A, Gewurz D, DeVine L, Zajmi U, Moralez J et al. Metabolic genes on conjugative plasmids are highly prevalent in Escherichia coli and can protect against antibiotic treatment. ISME J 2023; 17:151–162 [View Article] [PubMed]
    [Google Scholar]
  57. Yu W, Gillies K, Kondo JK, Broadbent JR, McKay LL. Loss of plasmid-mediated oligopeptide transport system in lactococci: another reason for slow milk coagulation. Plasmid 1996; 35:145–155 [View Article]
    [Google Scholar]
  58. Chakrabarty AM. Dissociation of a degradative plasmid aggregate in Pseudomonas. J Bacteriol 1974; 118:815–820 [View Article] [PubMed]
    [Google Scholar]
  59. van der Meer JR. Genetic adaptation of bacteria to chlorinated aromatic compounds. FEMS Microbiol Rev 1994; 15:239–249 [View Article] [PubMed]
    [Google Scholar]
  60. Pandeeti EVP, Longkumer T, Chakka D, Muthyala VR, Parthasarathy S et al. Multiple mechanisms contribute to lateral transfer of an organophosphate degradation (opd) island in Sphingobium fuliginis ATCC 27551. G3 2012; 2:1541–1554 [View Article] [PubMed]
    [Google Scholar]
  61. Portnoy DA, Martinez RJ. Role of a plasmid in the pathogenicity of Yersinia species. Curr Top Microbiol Immunol 1985; 118:29–51 [View Article] [PubMed]
    [Google Scholar]
  62. Beijersbergen A, Smith SJ, Hooykaas PJJ. Localization and topology of VirB proteins of Agrobacterium tumefaciens. Plasmid 1994; 32:212–218 [View Article]
    [Google Scholar]
  63. Wardell GE, Hynes MF, Young PJ, Harrison E. Why are rhizobial symbiosis genes mobile?. Phil Trans R Soc B 2022; 377: [View Article]
    [Google Scholar]
  64. Anda M, Ohtsubo Y, Okubo T, Sugawara M, Nagata Y et al. Bacterial clade with the ribosomal RNA operon on a small plasmid rather than the chromosome. Proc Natl Acad Sci 2015; 112:14343–14347 [View Article] [PubMed]
    [Google Scholar]
  65. Wein T, Wang Y, Barz M, Stücker FT, Hammerschmidt K et al. Essential gene acquisition destabilizes plasmid inheritance. PLoS Genet 2021; 17:e1009656 [View Article] [PubMed]
    [Google Scholar]
  66. Eberhard WG. Evolution in bacterial plasmids and levels of selection. Q Rev Biol 1990; 65:3–22 [View Article] [PubMed]
    [Google Scholar]
  67. Eberhard WG. Why do bacterial plasmids carry some genes and not others?. Plasmid 1989; 21:167–174 [View Article] [PubMed]
    [Google Scholar]
  68. Rankin DJ, Rocha EPC, Brown SP. What traits are carried on mobile genetic elements, and why?. Heredity 2011; 106:1–10 [View Article]
    [Google Scholar]
  69. Lehtinen S, Huisman JS, Bonhoeffer S. Evolutionary mechanisms that determine which bacterial genes are carried on plasmids. Evol Lett 2021; 5:290–301 [View Article] [PubMed]
    [Google Scholar]
  70. Boyd EF, Hill CW, Rich SM, Hartl DL. Mosaic structure of plasmids from natural populations of Escherichia coli. Genetics 1996; 143:1091–1100 [View Article] [PubMed]
    [Google Scholar]
  71. Osborn AM, da Silva Tatley FM, Steyn LM, Pickup RW, Saunders JR. Mosaic plasmids and mosaic replicons: evolutionary lessons from the analysis of genetic diversity in IncFII-related replicons. Microbiology 2000; 146:2267–2275 [View Article] [PubMed]
    [Google Scholar]
  72. Froehlich B, Parkhill J, Sanders M, Quail MA, Scott JR. The pCoo plasmid of enterotoxigenic Escherichia coli is a mosaic cointegrate. J Bacteriol 2005; 187:6509–6516 [View Article] [PubMed]
    [Google Scholar]
  73. Fecskeová L, Kovařík M, Javorský P, Pristaš P. Mosaic structure of the small cryptic plasmid pKST23 from Escherichia coli. Folia Microbiol 2012; 57:277–279 [View Article] [PubMed]
    [Google Scholar]
  74. Spaková T, Fecskeová LK, Javorský P, Pristas P. Two rep genes in small cryptic plasmid pKST21 of Escherichia coli. Curr Microbiol 2013; 67:437–441 [View Article] [PubMed]
    [Google Scholar]
  75. Maida I, Fondi M, Orlandini V, Emiliani G, Papaleo MC et al. Origin, duplication and reshuffling of plasmid genes: Insights from Burkholderia vietnamiensis G4 genome. Genomics 2014; 103:229–238 [View Article] [PubMed]
    [Google Scholar]
  76. Gibbs MD, Spiers AJ, Bergquist PL. RepFIB: a basic replicon of large plasmids. Plasmid 1993; 29:165–179 [View Article] [PubMed]
    [Google Scholar]
  77. Bedbrook JR, Ausubel FM. Recombination between bacterial plasmids leading to the formation of plasmid multimers. Cell 1976; 9:707–716 [View Article]
    [Google Scholar]
  78. Projan SJ, Monod M, Narayanan CS, Dubnau D. Replication properties of pIM13, a naturally occurring plasmid found in Bacillus subtilis, and of its close relative pE5, a plasmid native to Staphylococcus aureus. J Bacteriol 1987; 169:5131–5139 [View Article]
    [Google Scholar]
  79. Wein T, Wang Y, Hülter NF, Hammerschmidt K, Dagan T. Antibiotics interfere with the evolution of plasmid stability. Curr Biol 2020; 30:3841–3847 [View Article] [PubMed]
    [Google Scholar]
  80. Abe R, Akeda Y, Sugawara Y, Matsumoto Y, Motooka D et al. Enhanced carbapenem resistance through multimerization of plasmids carrying carbapenemase genes. mBio 2021; 12:e0018621 [View Article] [PubMed]
    [Google Scholar]
  81. Milliken CE, Clowes RC. Molecular structure of an R factor, its component drug-resistance determinants and transfer factor. J Bacteriol 1973; 113:1026–1033 [View Article] [PubMed]
    [Google Scholar]
  82. Nugent ME, Hedges RW. Recombinant plasmids formed in vivo carrying and expressing two incompatibility regions. J Gen Microbiol 1979; 114:467–470 [View Article] [PubMed]
    [Google Scholar]
  83. Hülter NF, Wein T, Effe J, Garoña A, Dagan T. Intracellular competitions reveal determinants of plasmid evolutionary success. Front Microbiol 2020; 11:2062 [View Article] [PubMed]
    [Google Scholar]
  84. Taylor DE, Levine JG, Bradley DE. In vivo formation of a plasmid cointegrate expressing two incompatibility phenotypes. Plasmid 1981; 5:233–244 [View Article] [PubMed]
    [Google Scholar]
  85. Ohtsubo E, Zenilman M, Ohtsubo H, McCormick M, Machida C et al. Mechanism of insertion and cointegration mediated by IS1 and Tn3. Cold Spring Harb Symp Quant Biol 1981; 45 Pt 1:283–295 [View Article] [PubMed]
    [Google Scholar]
  86. Machida Y, Machida C, Ohtsubo H, Ohtsubo E. Factors determining frequency of plasmid cointegration mediated by insertion sequence IS1. Proc Natl Acad Sci 1982; 79:277–281 [View Article] [PubMed]
    [Google Scholar]
  87. Liu Y, He D, Zhang M, Pan Y, Wu H et al. The formation of two hybrid plasmids mediated by IS26 and Tn6952 in Salmonella enterica serotype enteritidis. Front Microbiol 2021; 12: [View Article]
    [Google Scholar]
  88. Santos-Lopez A, Bernabe-Balas C, Ares-Arroyo M, Ortega-Huedo R, Hoefer A et al. A naturally occurring single nucleotide polymorphism in a multicopy plasmid produces a reversible increase in antibiotic resistance. Antimicrob Agents Chemother 2017; 61:e01735-16 [View Article] [PubMed]
    [Google Scholar]
  89. Wong Ng J, Chatenay D, Robert J, Poirier MG. Plasmid copy number noise in monoclonal populations of bacteria. Phys Rev E Stat Nonlin Soft Matter Phys 2010; 81:011909 [View Article] [PubMed]
    [Google Scholar]
  90. San Millan A, Escudero JA, Gifford DR, Mazel D, MacLean RC. Multicopy plasmids potentiate the evolution of antibiotic resistance in bacteria. Nat Ecol Evol 2016; 1:10 [View Article] [PubMed]
    [Google Scholar]
  91. Mei H, Arbeithuber B, Cremona MA, DeGiorgio M, Nekrutenko A. A high-resolution view of adaptive event dynamics in a plasmid. Genome Biol Evol 2019; 11:3022–3034 [View Article] [PubMed]
    [Google Scholar]
  92. Hernandez-Beltran JCR, Miró Pina V, Siri-Jégousse A, Palau S, Peña-Miller R et al. Segregational instability of multicopy plasmids: a population genetics approach. Ecol Evol 2022; 12:e9469 [View Article] [PubMed]
    [Google Scholar]
  93. Burian J, Stuchlík S, Kay WW. Replication control of a small cryptic plasmid of Escherichia coli. J Mol Biol 1999; 294:49–65 [View Article] [PubMed]
    [Google Scholar]
  94. Nordström K. Plasmid R1--replication and its control. Plasmid 2006; 55:1–26 [View Article] [PubMed]
    [Google Scholar]
  95. Rivera-Urbalejo A, Pérez-Oseguera Á, Carreón-Rodríguez OE, Cevallos MA. Mutations in an antisense RNA, involved in the replication control of a repABC plasmid, that disrupt plasmid incompatibility and mediate plasmid speciation. Plasmid 2015; 78:48–58 [View Article] [PubMed]
    [Google Scholar]
  96. Reyes-Lamothe R, Tran T, Meas D, Lee L, Li AM et al. High-copy bacterial plasmids diffuse in the nucleoid-free space, replicate stochastically and are randomly partitioned at cell division. Nucleic Acids Res 2014; 42:1042–1051 [View Article] [PubMed]
    [Google Scholar]
  97. Nordström K, Gerdes K. Clustering versus random segregation of plasmids lacking a partitioning function: a plasmid paradox?. Plasmid 2003; 50:95–101 [View Article] [PubMed]
    [Google Scholar]
  98. Garoña A, Santer M, Hülter NF, Uecker H, Dagan T. Segregational drift hinders the evolution of antibiotic resistance on polyploid replicons. PLoS Genet In press
    [Google Scholar]
  99. Lau BTC, Malkus P, Paulsson J. New quantitative methods for measuring plasmid loss rates reveal unexpected stability. Plasmid 2013; 70:353–361 [View Article] [PubMed]
    [Google Scholar]
  100. Guynet C, Cuevas A, Moncalián G, de la Cruz F. The stb operon balances the requirements for vegetative stability and conjugative transfer of plasmid R388. PLoS Genet 2011; 7:e1002073 [View Article] [PubMed]
    [Google Scholar]
  101. Yao S, Helinski DR, Toukdarian A. Localization of the naturally occurring plasmid ColE1 at the cell pole. J Bacteriol 2007; 189:1946–1953 [View Article] [PubMed]
    [Google Scholar]
  102. Summers DK, Beton CWH, Withers HL. Multicopy plasmid instability: the dimer catastrophe hypothesis. Mol Microbiol 1993; 8:1031–1038 [View Article]
    [Google Scholar]
  103. Crozat E, Fournes F, Cornet F, Hallet B, Rousseau P. Resolution of multimeric forms of circular plasmids and chromosomes. Microbiol Spectr 2014; 2: [View Article] [PubMed]
    [Google Scholar]
  104. Summers DK, Sherratt DJ. Multimerization of high copy number plasmids causes instability: ColE1 encodes a determinant essential for plasmid monomerization and stability. Cell 1984; 36:1097–1103 [View Article]
    [Google Scholar]
  105. Possoz C, Ribard C, Gagnat J, Pernodet J-L, Guérineau M. The integrative element pSAM2 from Streptomyces: kinetics and mode of conjugal transfer. Mol Microbiol 2001; 42:159–166 [View Article] [PubMed]
    [Google Scholar]
  106. Thoma L, Muth G. Conjugative DNA transfer in Streptomyces by TraB: is one protein enough?. FEMS Microbiol Lett 2012; 337:81–88 [View Article]
    [Google Scholar]
  107. Szpirer C, Top E, Couturier M, Mergeay M. Retrotransfer or gene capture: a feature of conjugative plasmids, with ecological and evolutionary significance. Microbiology 1999; 145:3321–3329 [View Article] [PubMed]
    [Google Scholar]
  108. Erdmann S, Tschitschko B, Zhong L, Raftery MJ, Cavicchioli R. A plasmid from an Antarctic haloarchaeon uses specialized membrane vesicles to disseminate and infect plasmid-free cells. Nat Microbiol 2017; 2:1446–1455 [View Article] [PubMed]
    [Google Scholar]
  109. Blesa A, Baquedano I, Quintáns NG, Mata CP, Castón JR et al. The transjugation machinery of Thermus thermophilus: Identification of TdtA, an ATPase involved in DNA donation. PLoS Genet 2017; 13:e1006669 [View Article] [PubMed]
    [Google Scholar]
  110. Ramsay JP, Kwong SM, Murphy RJT, Yui Eto K, Price KJ et al. An updated view of plasmid conjugation and mobilization in Staphylococcus. Mobile Genetic Elements 2016; 6:e1208317 [View Article]
    [Google Scholar]
  111. Koraimann G, Wagner MA. Social behavior and decision making in bacterial conjugation. Front Cell Infect Microbiol 2014; 4: [View Article]
    [Google Scholar]
  112. Lundquist PD, Levin BR. Transitory derepression and the maintenance of conjugative plasmids. Genetics 1986; 113:483–497 [View Article] [PubMed]
    [Google Scholar]
  113. Samuel B, Burstein D. A diverse repertoire of anti-defense systems is encoded in the leading region of plasmids. Microbiology 2023 [View Article]
    [Google Scholar]
  114. Clark AJ, Adelberg EA. Bacterial conjugation. Annu Rev Microbiol 1962; 16:289–319 [View Article]
    [Google Scholar]
  115. Xiao J, Melton RE, Kieser T. High-frequency homologous plasmid-plasmid recombination coupled with conjugation of plasmid SCP2* in Streptomyces. Mol Microbiol 1994; 14:547–555 [View Article]
    [Google Scholar]
  116. Gerdes K, Rasmussen PB, Molin S. Unique type of plasmid maintenance function: postsegregational killing of plasmid-free cells. Proc Natl Acad Sci 1986; 83:3116–3120 [View Article]
    [Google Scholar]
  117. Jensen RB, Gerdes K. Programmed cell death in bacteria: proteic plasmid stabilization systems. Mol Microbiol 1995; 17:205–210 [View Article]
    [Google Scholar]
  118. Naito T, Kusano K, Kobayashi I. Selfish behavior of restriction-modification systems. Science 1995; 267:897–899 [View Article]
    [Google Scholar]
  119. Kusano K, Naito T, Handa N, Kobayashi I. Restriction-modification systems as genomic parasites in competition for specific sequences. Proc Natl Acad Sci 1995; 92:11095–11099 [View Article] [PubMed]
    [Google Scholar]
  120. Cooper TF, Heinemann JA. Postsegregational killing does not increase plasmid stability but acts to mediate the exclusion of competing plasmids. Proc Natl Acad Sci 2000; 97:12643–12648 [View Article] [PubMed]
    [Google Scholar]
  121. Mongold JA. Theoretical implications for the evolution of postsegregational killing by bacterial plasmids. Am Nat 1992; 139:677–689 [View Article]
    [Google Scholar]
  122. Rankin DJ, Turner LA, Heinemann JA, Brown SP. The coevolution of toxin and antitoxin genes drives the dynamics of bacterial addiction complexes and intragenomic conflict. Proc R Soc B 2012; 279:3706–3715 [View Article]
    [Google Scholar]
  123. Cooper TF, Paixão T, Heinemann JA. Within-host competition selects for plasmid-encoded toxin-antitoxin systems. Proc Biol Sci 2010; 277:3149–3155 [View Article] [PubMed]
    [Google Scholar]
  124. Tsilibaris V, Maenhaut-Michel G, Mine N, Van Melderen L. What is the benefit to Escherichia coli of having multiple toxin-antitoxin systems in its genome?. J Bacteriol 2007; 189:6101–6108 [View Article] [PubMed]
    [Google Scholar]
  125. Magnuson RD. Hypothetical functions of toxin-antitoxin systems. J Bacteriol 2007; 189:6089–6092 [View Article] [PubMed]
    [Google Scholar]
  126. Song S, Wood TK. Post-segregational killing and phage inhibition are not mediated by cell death through toxin/antitoxin systems. Front Microbiol 2018; 9:814 [View Article] [PubMed]
    [Google Scholar]
  127. Pilosof S. Conceptualizing microbe-plasmid communities as complex adaptive systems. Trends Microbiol 2023; 31:672–680 [View Article] [PubMed]
    [Google Scholar]
  128. Bethke JH, Ma HR, Tsoi R, Cheng L, Xiao M et al. Vertical and horizontal gene transfer tradeoffs direct plasmid fitness. Mol Syst Biol 2023; 19:e11300 [View Article] [PubMed]
    [Google Scholar]
  129. Paulsson J. Multileveled selection on plasmid replication. Genetics 2002; 161:1373–1384 [View Article] [PubMed]
    [Google Scholar]
  130. Platt TG, Morton ER, Barton IS, Bever JD, Fuqua C. Ecological dynamics and complex interactions of Agrobacterium megaplasmids. Front Plant Sci 2014; 5:635 [View Article] [PubMed]
    [Google Scholar]
  131. Hall JPJ, Harrison E, Lilley AK, Paterson S, Spiers AJ et al. Environmentally co-occurring mercury resistance plasmids are genetically and phenotypically diverse and confer variable context-dependent fitness effects. Environ Microbiol 2015; 17:5008–5022 [View Article] [PubMed]
    [Google Scholar]
  132. Billane K, Harrison E, Cameron D, Brockhurst MA. Why do plasmids manipulate the expression of bacterial phenotypes?. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200461 [View Article] [PubMed]
    [Google Scholar]
  133. Hall JPJ, Wright RCT, Harrison E, Muddiman KJ, Wood AJ et al. Plasmid fitness costs are caused by specific genetic conflicts enabling resolution by compensatory mutation. PLoS Biol 2021; 19:e3001225 [View Article] [PubMed]
    [Google Scholar]
  134. Diaz Ricci JC, Hernández ME. Plasmid effects on Escherichia coli metabolism. Crit Rev Biotechnol 2000; 20:79–108 [View Article] [PubMed]
    [Google Scholar]
  135. Alonso-Del Valle A, León-Sampedro R, Rodríguez-Beltrán J, DelaFuente J, Hernández-García M et al. Variability of plasmid fitness effects contributes to plasmid persistence in bacterial communities. Nat Commun 2021; 12:2653 [View Article] [PubMed]
    [Google Scholar]
  136. Harr B, Schlötterer C. Gene expression analysis indicates extensive genotype-specific crosstalk between the conjugative F-plasmid and the E. coli chromosome. BMC Microbiol 2006; 6:80 [View Article] [PubMed]
    [Google Scholar]
  137. Yano H, Wegrzyn K, Loftie-Eaton W, Johnson J, Deckert GE et al. Evolved plasmid-host interactions reduce plasmid interference cost. Mol Microbiol 2016; 101:743–756 [View Article] [PubMed]
    [Google Scholar]
  138. Zhang J-F, Fang L-X, Chang M-X, Cheng M, Zhang H et al. A trade-off for maintenance of multidrug-resistant IncHI2 plasmids in Salmonella enterica serovar Typhimurium through adaptive evolution. mSystems 2022; 7:e0024822 [View Article] [PubMed]
    [Google Scholar]
  139. Rajer F, Sandegren L. The role of antibiotic resistance genes in the fitness cost of multiresistance plasmids. mBio 2022; 13:e0355221 [View Article] [PubMed]
    [Google Scholar]
  140. Lamberte LE, Baniulyte G, Singh SS, Stringer AM, Bonocora RP et al. Horizontally acquired AT-rich genes in Escherichia coli cause toxicity by sequestering RNA polymerase. Nat Microbiol 2017; 2:16249 [View Article] [PubMed]
    [Google Scholar]
  141. Rodríguez-Beltrán J, León-Sampedro R, Ramiro-Martínez P, de la Vega C, Baquero F et al. Translational demand is not a major source of plasmid-associated fitness costs. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200463 [View Article] [PubMed]
    [Google Scholar]
  142. Heuer H, Fox RE, Top EM. Frequent conjugative transfer accelerates adaptation of a broad-host-range plasmid to an unfavorable Pseudomonas putida host. FEMS Microbiol Ecol 2007; 59:738–748 [View Article] [PubMed]
    [Google Scholar]
  143. Porse A, Schønning K, Munck C, Sommer MOA. Survival and evolution of a large multidrug resistance plasmid in new clinical bacterial hosts. Mol Biol Evol 2016; 33:2860–2873 [View Article] [PubMed]
    [Google Scholar]
  144. Dorado-Morales P, Garcillán-Barcia MP, Lasa I, Solano C. Fitness cost evolution of natural plasmids of Staphylococcus aureus. mBio 2021; 12:e03094-20 [View Article] [PubMed]
    [Google Scholar]
  145. Bouma JE, Lenski RE. Evolution of a bacteria/plasmid association. Nature 1988; 335:351–352 [View Article]
    [Google Scholar]
  146. San Millan A, Peña-Miller R, Toll-Riera M, Halbert ZV, McLean AR et al. Positive selection and compensatory adaptation interact to stabilize non-transmissible plasmids. Nat Commun 2014; 5:1 [View Article]
    [Google Scholar]
  147. Loftie-Eaton W, Yano H, Burleigh S, Simmons RS, Hughes JM et al. Evolutionary paths that expand plasmid host-range: implications for spread of antibiotic resistance. Mol Biol Evol 2016; 33:885–897 [View Article] [PubMed]
    [Google Scholar]
  148. Harrison E, Guymer D, Spiers AJ, Paterson S, Brockhurst MA. Parallel compensatory evolution stabilizes plasmids across the parasitism-mutualism continuum. Curr Biol 2015; 25:2034–2039 [View Article] [PubMed]
    [Google Scholar]
  149. Hall JPJ, Wright RCT, Guymer D, Harrison E, Brockhurst MA. Extremely fast amelioration of plasmid fitness costs by multiple functionally diverse pathways. Microbiology 2020; 166:56–62 [View Article] [PubMed]
    [Google Scholar]
  150. Zhang L, Fu Y, Zhang L, Xu Q, Yang Y et al. Co-evolutionary adaptations of Acinetobacter baumannii and a clinical carbapenemase-encoding plasmid during carbapenem exposure. Evol Appl 2022; 15:1045–1061 [View Article] [PubMed]
    [Google Scholar]
  151. Dahlberg C, Chao L. Amelioration of the cost of conjugative plasmid carriage in Eschericha coli K12. Genetics 2003; 165:1641–1649 [View Article] [PubMed]
    [Google Scholar]
  152. Dionisio F, Conceição IC, Marques ACR, Fernandes L, Gordo I. The evolution of a conjugative plasmid and its ability to increase bacterial fitness. Biol Lett 2005; 1:250–252 [View Article] [PubMed]
    [Google Scholar]
  153. Sota M, Yano H, Hughes JM, Daughdrill GW, Abdo Z et al. Shifts in the host range of a promiscuous plasmid through parallel evolution of its replication initiation protein. ISME J 2010; 4:1568–1580 [View Article] [PubMed]
    [Google Scholar]
  154. Zwanzig M, Harrison E, Brockhurst MA, Hall JPJ, Berendonk TU et al. Mobile compensatory mutations promote plasmid survival. mSystems 2019; 4:1 [View Article] [PubMed]
    [Google Scholar]
  155. Carrilero L, Kottara A, Guymer D, Harrison E, Hall JPJ et al. Positive selection inhibits plasmid coexistence in bacterial genomes. mBio 2021; 12:3 [View Article] [PubMed]
    [Google Scholar]
  156. Given C, Penttinen R, Jalasvuori M. Plasmid viability depends on the ecological setting of hosts within a multiplasmid community. Microbiol Spectr 2022; 10:e0013322 [View Article] [PubMed]
    [Google Scholar]
  157. Malaka De Silva P, Stenhouse GE, Blackwell GA, Bengtsson RJ, Jenkins C et al. A tale of two plasmids: contributions of plasmid associated phenotypes to epidemiological success among Shigella. Proc Biol Sci 2022; 289:20220581 [View Article] [PubMed]
    [Google Scholar]
  158. Takeda T, Yun C-S, Shintani M, Yamane H, Nojiri H. Distribution of genes encoding nucleoid-associated protein homologs in plasmids. Int J Evol Biol 2011; 2011:685015 [View Article] [PubMed]
    [Google Scholar]
  159. Harrison E, Brockhurst MA. Plasmid-mediated horizontal gene transfer is a coevolutionary process. Trends Microbiol 2012; 20:262–267 [View Article] [PubMed]
    [Google Scholar]
  160. Brockhurst MA, Harrison E. Ecological and evolutionary solutions to the plasmid paradox. Trends Microbiol 2022; 30:534–543 [View Article] [PubMed]
    [Google Scholar]
  161. Price VJ, Huo W, Sharifi A, Palmer KL. CRISPR-Cas and restriction-modification act additively against conjugative antibiotic resistance plasmid transfer in Enterococcus faecalis. mSphere 2016; 1:e00064-16 [View Article] [PubMed]
    [Google Scholar]
  162. Pursey E, Dimitriu T, Paganelli FL, Westra ER, van Houte S. CRISPR-Cas is associated with fewer antibiotic resistance genes in bacterial pathogens. Phil Trans R Soc B 2022; 377: [View Article]
    [Google Scholar]
  163. Jaskólska M, Adams DW, Blokesch M. Two defence systems eliminate plasmids from seventh pandemic Vibrio cholerae. Nature 2022; 604:323–329 [View Article]
    [Google Scholar]
  164. Miyakoshi M, Shintani M, Inoue K, Terabayashi T, Sai F et al. ParI, an orphan ParA family protein from Pseudomonas putida KT2440-specific genomic island, interferes with the partition system of IncP-7 plasmids. Environ Microbiol 2012; 14:2946–2959 [View Article] [PubMed]
    [Google Scholar]
  165. Nogueira T, Rankin DJ, Touchon M, Taddei F, Brown SP et al. Horizontal gene transfer of the secretome drives the evolution of bacterial cooperation and virulence. Curr Biol 2009; 19:1683–1691 [View Article] [PubMed]
    [Google Scholar]
  166. Kelsic ED, Zhao J, Vetsigian K, Kishony R. Counteraction of antibiotic production and degradation stabilizes microbial communities. Nature 2015; 521:516–519 [View Article] [PubMed]
    [Google Scholar]
  167. Riley MA, Wertz JE. Bacteriocins: evolution, ecology, and application. Annu Rev Microbiol 2002; 56:117–137 [View Article] [PubMed]
    [Google Scholar]
  168. Smith BA, Dougherty K, Clark M, Baltrus DA. Experimental evolution of the megaplasmid pMPPla107 in Pseudomonas stutzeri enables identification of genes contributing to sensitivity to an inhibitory agent. Phil Trans R Soc B 2022; 377: [View Article]
    [Google Scholar]
  169. Ghigo J-M. Natural conjugative plasmids induce bacterial biofilm development. Nature 2001; 412:442–445 [View Article]
    [Google Scholar]
  170. Madsen JS, Burmølle M, Hansen LH, Sørensen SJ. The interconnection between biofilm formation and horizontal gene transfer. FEMS Immunol Med Microbiol 2012; 65:183–195 [View Article] [PubMed]
    [Google Scholar]
  171. Cook LCC, Dunny GM. The influence of biofilms in the biology of plasmids. Microbiol Spectr 2014; 2:5 [View Article] [PubMed]
    [Google Scholar]
  172. Abe K, Nomura N, Suzuki S. Biofilms: hot spots of horizontal gene transfer (HGT) in aquatic environments, with a focus on a new HGT mechanism. FEMS Microbiol Ecol 2020; 96:fiaa031 [View Article] [PubMed]
    [Google Scholar]
  173. Gama JA, Aarag Fredheim EG, Cléon F, Reis AM, Zilhão R et al. Dominance between plasmids determines the extent of biofilm formation. Front Microbiol 2020; 11:02070 [View Article]
    [Google Scholar]
  174. Stalder T, Top E. Plasmid transfer in biofilms: a perspective on limitations and opportunities. NPJ Biofilms Microb 2016; 2:1 [View Article]
    [Google Scholar]
  175. Metzger GA, Ridenhour BJ, France M, Gliniewicz K, Millstein J et al. Biofilms preserve the transmissibility of a multi-drug resistance plasmid. NPJ Biofilms Microb 2022; 8:95 [View Article] [PubMed]
    [Google Scholar]
  176. Lee H-H, Hsu C-C, Lin Y-L, Chen CW. Linear plasmids mobilize linear but not circular chromosomes in Streptomyces: support for the “end first” model of conjugal transfer. Microbiology 2011; 157:2556–2568 [View Article] [PubMed]
    [Google Scholar]
  177. Hall JPJ, Wood AJ, Harrison E, Brockhurst MA. Source–sink plasmid transfer dynamics maintain gene mobility in soil bacterial communities. Proc Natl Acad Sci 2016; 113:8260–8265 [View Article]
    [Google Scholar]
  178. Li L, Dechesne A, Madsen JS, Nesme J, Sørensen SJ et al. Plasmids persist in a microbial community by providing fitness benefit to multiple phylotypes. ISME J 2020; 14:1170–1181 [View Article]
    [Google Scholar]
  179. Cairns J, Koskinen K, Penttinen R, Patinen T, Hartikainen A et al. Black queen evolution and trophic interactions determine plasmid survival after the disruption of the conjugation network. mSystems 2018; 3:e00104-18 [View Article] [PubMed]
    [Google Scholar]
  180. San Millan A, Escudero JA, Gutierrez B, Hidalgo L, Garcia N et al. Multiresistance in Pasteurella multocida is mediated by coexistence of small plasmids. Antimicrob Agents Chemother 2009; 53:3399–3404 [View Article]
    [Google Scholar]
  181. Smith CJ, Tribble GD, Bayley DP. Genetic elements of bacteroides species: a moving story. Plasmid 1998; 40:12–29 [View Article]
    [Google Scholar]
  182. van der Hoeven N. Evolution of bacterial surface exclusion against incompatible plasmids. J Theor Biol 1985; 117:431–452 [View Article] [PubMed]
    [Google Scholar]
  183. Pinilla-Redondo R, Mayo-Muñoz D, Russel J, Garrett RA, Randau L et al. Type IV CRISPR-Cas systems are highly diverse and involved in competition between plasmids. Nucleic Acids Res 2019; 48: [View Article]
    [Google Scholar]
  184. Kamruzzaman M, Iredell JR. CRISPR-Cas system in antibiotic resistance plasmids in Klebsiella pneumoniae. Front Microbiol 2019; 10:2934 [View Article] [PubMed]
    [Google Scholar]
  185. Pinilla-Redondo R, Russel J, Mayo-Muñoz D, Shah SA, Garrett RA et al. CRISPR-Cas systems are widespread accessory elements across bacterial and archaeal plasmids. Microbiology 2021; 504315–4328 [View Article]
    [Google Scholar]
  186. Igler C, Huisman JS, Siedentop B, Bonhoeffer S, Lehtinen S. Plasmid co-infection: linking biological mechanisms to ecological and evolutionary dynamics. Phil Trans R Soc B 2022; 377: [View Article]
    [Google Scholar]
  187. Santos-Lopez A, Bernabe-Balas C, San Millan A, Ortega-Huedo R, Hoefer A et al. Compensatory evolution facilitates the acquisition of multiple plasmids in bacteria. Microbiology 2017 [View Article]
    [Google Scholar]
  188. San Millan A, Heilbron K, MacLean RC. Positive epistasis between co-infecting plasmids promotes plasmid survival in bacterial populations. ISME J 2014; 8:601–612 [View Article]
    [Google Scholar]
  189. Lopez JG, Donia MS, Wingreen NS. Modeling the ecology of parasitic plasmids. ISME J 2021; 15:2843–2852 [View Article] [PubMed]
    [Google Scholar]
  190. Horne T, Orr VT, Hall JPJ. How do interactions between mobile genetic elements affect horizontal gene transfer?. Curr Opin Microbiol 2023; 73:102282 [View Article] [PubMed]
    [Google Scholar]
  191. Brom S, Girard L, Tun-Garrido C, García-de los Santos A, Bustos P et al. Transfer of the symbiotic plasmid of Rhizobium etli CFN42 requires cointegration with p42a, which may be mediated by site-specific recombination. J Bacteriol 2004; 186:7538–7548 [View Article] [PubMed]
    [Google Scholar]
  192. Gama JA, Zilhão R, Dionisio F. Conjugation efficiency depends on intra and intercellular interactions between distinct plasmids: Plasmids promote the immigration of other plasmids but repress co-colonizing plasmids. Plasmid 2017; 93:6–16 [View Article]
    [Google Scholar]
  193. Gama JA, Zilhão R, Dionisio F. Multiple plasmid interference – Pledging allegiance to my enemy’s enemy. Plasmid 2017; 93:17–23 [View Article]
    [Google Scholar]
  194. Burrus V, Pavlovic G, Decaris B, Guédon G. Conjugative transposons: the tip of the iceberg. Mol Microbiol 2002; 46:601–610 [View Article] [PubMed]
    [Google Scholar]
  195. Ojala V, Laitalainen J, Jalasvuori M. Fight evolution with evolution: plasmid-dependent phages with a wide host range prevent the spread of antibiotic resistance. Evol Appl 2013; 6:925–932 [View Article] [PubMed]
    [Google Scholar]
  196. Ojala V, Mattila S, Hoikkala V, Bamford JK, Hiltunen T et al. Scoping the effectiveness and evolutionary obstacles in using plasmid-dependent phages to fight antibiotic resistance. Future Microbiol 2016; 11:999–1009 [View Article] [PubMed]
    [Google Scholar]
  197. Igler C, Schwyter L, Gehrig D, Wendling CC. Conjugative plasmid transfer is limited by prophages but can be overcome by high conjugation rates. Phil Trans R Soc B 2022; 377: [View Article]
    [Google Scholar]
  198. Novick RP, Hoppensteadt FC. On plasmid incompatibility. Plasmid 1978; 1:421–434 [View Article]
    [Google Scholar]
  199. Seneta E, Tavaré S. Some stochastic models for plasmid copy number. Theor Popul Biol 1983; 23:241–256 [View Article] [PubMed]
    [Google Scholar]
  200. Ishii K, Hashimoto-Gotoh T, Matsubara K. Random replication and random assortment model for plasmid incompatibility in bacteria. Plasmid 1978; 1:435–445 [View Article] [PubMed]
    [Google Scholar]
  201. Cullum J, Broda P. Rate of segregation due to plasmid incompatibility. Genet Res 1979; 33:61–79 [View Article]
    [Google Scholar]
  202. Nordström K, Aagaard-Hansen H. Maintenance of bacterial plasmids: comparison of theoretical calculations and experiments with plasmid R1 in Escherichia coli. Mol Gen Genet 1984; 197:1–7 [View Article]
    [Google Scholar]
  203. Condit R, Levin BR. The evolution of plasmids carrying multiple resistance genes: the role of segregation, transposition, and homologous recombination. Am Nat 1990; 135:573–596 [View Article]
    [Google Scholar]
  204. Verweij W, Griswold CK. Spatial structure and benefits to hosts allow plasmids with and without post-segregational killing systems to coexist. Biol Lett 2023; 19:20220376 [View Article] [PubMed]
    [Google Scholar]
  205. Tazzyman SJ, Bonhoeffer S. Plasmids and evolutionary rescue by drug resistance. Evolution 2014; 68:2066–2078 [View Article] [PubMed]
    [Google Scholar]
  206. Werisch M, Berger U, Berendonk TU. Conjugative plasmids enable the maintenance of low cost non-transmissible plasmids. Plasmid 2017; 91:96–104 [View Article] [PubMed]
    [Google Scholar]
  207. Svara F, Rankin DJ. The evolution of plasmid-carried antibiotic resistance. BMC Evol Biol 2011; 11:130 [View Article] [PubMed]
    [Google Scholar]
  208. Geoffroy F, Uecker H. Limits to adaptation on conjugative plasmids. BioRxiv 2022 [View Article]
    [Google Scholar]
  209. van der Hoeven N. A mathematical model for the co-existence of incompatible, conjugative plasmids in individual bacteria of a bacterial population. J Theor Biol 1984; 110:411–423 [View Article] [PubMed]
    [Google Scholar]
  210. Van der Hoeven N. Coexistence of incompatible plasmids in a bacterial population living under a feast and famine regime. J Math Biol 1986; 24:313–325 [View Article]
    [Google Scholar]
  211. Yano H, Rogers LM, Knox MG, Heuer H, Smalla K et al. Host range diversification within the IncP-1 plasmid group. Microbiology 2013; 159:2303–2315 [View Article] [PubMed]
    [Google Scholar]
  212. Willms AR, Roughan PD, Heinemann JA. Static recipient cells as reservoirs of antibiotic resistance during antibiotic therapy. Theor Popul Biol 2006; 70:436–451 [View Article] [PubMed]
    [Google Scholar]
  213. D’Agata EMC, Dupont-Rouzeyrol M, Magal P, Olivier D, Ruan S. The impact of different antibiotic regimens on the emergence of antimicrobial-resistant bacteria. PLoS One 2008; 3:e4036 [View Article] [PubMed]
    [Google Scholar]
  214. Bergstrom CT, Lo M, Lipsitch M. Ecological theory suggests that antimicrobial cycling will not reduce antimicrobial resistance in hospitals. Proc Natl Acad Sci 2004; 101:13285–13290 [View Article] [PubMed]
    [Google Scholar]
  215. Webb GF, D’Agata EMC, Magal P, Ruan S. A model of antibiotic-resistant bacterial epidemics in hospitals. Proc Natl Acad Sci 2005; 102:13343–13348 [View Article] [PubMed]
    [Google Scholar]
  216. Orazi G, O’Toole GA. “It takes a village”: mechanisms underlying antimicrobial recalcitrance of polymicrobial biofilms. J Bacteriol 2019; 202:e00530-19 [View Article] [PubMed]
    [Google Scholar]
  217. Volkova VV, Lanzas C, Lu Z, Gröhn YT. Mathematical model of plasmid-mediated resistance to ceftiofur in commensal enteric Escherichia coli of cattle. PLoS One 2012; 7:e36738 [View Article] [PubMed]
    [Google Scholar]
  218. Volkova VV, Lu Z, Lanzas C, Scott HM, Gröhn YT. Modelling dynamics of plasmid-gene mediated antimicrobial resistance in enteric bacteria using stochastic differential equations. Sci Rep 2013; 3:2463 [View Article] [PubMed]
    [Google Scholar]
  219. Fox RE, Zhong X, Krone SM, Top EM. Spatial structure and nutrients promote invasion of IncP-1 plasmids in bacterial populations. ISME J 2008; 2:1024–1039 [View Article] [PubMed]
    [Google Scholar]
  220. Levin BR, Stewart FM, Rice VA. The kinetics of conjugative plasmid transmission: fit of a simple mass action model. Plasmid 1979; 2:247–260 [View Article] [PubMed]
    [Google Scholar]
  221. Stewart FM, Levin BR. The population biology of bacterial plasmids: a priori conditions for the existence of conjugationally transmitted factors. Genetics 1977; 87:209–228 [View Article] [PubMed]
    [Google Scholar]
  222. Levin BR, Stewart FM. The population biology of bacterial plasmids: a priori conditions for the existence of mobilizable nonconjugative factors. Genetics 1980; 94:425–443 [View Article] [PubMed]
    [Google Scholar]
  223. Bergstrom CT, Lipsitch M, Levin BR. Natural selection, infectious transfer and the existence conditions for bacterial plasmids. Genetics 2000; 155:1505–1519 [View Article] [PubMed]
    [Google Scholar]
  224. Lili LN, Britton NF, Feil EJ. The persistence of parasitic plasmids. Genetics 2007; 177:399–405 [View Article] [PubMed]
    [Google Scholar]
  225. Ponciano JM, De Gelder L, Top EM, Joyce P. The population biology of bacterial plasmids: a hidden Markov model approach. Genetics 2007; 176:957–968 [View Article] [PubMed]
    [Google Scholar]
  226. Tepekule B, Abel Zur Wiesch P, Kouyos RD, Bonhoeffer S. Quantifying the impact of treatment history on plasmid-mediated resistance evolution in human gut microbiota. Proc Natl Acad Sci 2019; 116:23106–23116 [View Article] [PubMed]
    [Google Scholar]
  227. Tazzyman SJ, Bonhoeffer S. Fixation probability of mobile genetic elements such as plasmids. Theor Popul Biol 2013; 90:49–55 [View Article] [PubMed]
    [Google Scholar]
  228. Santer M, Uecker H. Evolutionary rescue and drug resistance on multicopy plasmids. Genetics 2020; 215:847–868 [View Article] [PubMed]
    [Google Scholar]
  229. Moran PAP. Random processes in genetics. Math Proc Camb Philos Soc 1958; 54:60–71 [View Article]
    [Google Scholar]
  230. Santer M, Kupczok A, Dagan T, Uecker H. Fixation dynamics of beneficial alleles in prokaryotic polyploid chromosomes and plasmids. Genetics 2022; 222:2 [View Article] [PubMed]
    [Google Scholar]
  231. Novozhilov AS, Karev GP, Koonin EV. Mathematical modeling of evolution of horizontally transferred genes. Mol Biol Evol 2005; 22:1721–1732 [View Article] [PubMed]
    [Google Scholar]
  232. Krone SM, Lu R, Fox R, Suzuki H, Top EM. Modelling the spatial dynamics of plasmid transfer and persistence. Microbiology 2007; 153:2803–2816 [View Article]
    [Google Scholar]
  233. Domingues CPF, Rebelo JS, Monteiro F, Nogueira T, Dionisio F. Harmful behaviour through plasmid transfer: a successful evolutionary strategy of bacteria harbouring conjugative plasmids. Philos Trans R Soc Lond B Biol Sci 2022; 377:20200473 [View Article] [PubMed]
    [Google Scholar]
  234. Lee SB, Bailey JE. A mathematical model for Λdv Plasmid replication: analysis of wild-type Plasmid. Plasmid 1984; 11:151–165 [View Article]
    [Google Scholar]
  235. Brendel V, Perelson AS. Quantitative model of ColE1 plasmid copy number control. J Mol Biol 1993; 229:860–872 [View Article] [PubMed]
    [Google Scholar]
  236. Karin M. Evolutionary model for the unequal segregation of high copy Plas Mids. PLoS Comput Biol 2019; 15:cbi [View Article]
    [Google Scholar]
  237. Schmartz GP et al. PLSDB: advancing a comprehensive database of bacterial plasmids. Nucleic Acids Res 2021; 50:D273–D278 [View Article]
    [Google Scholar]
  238. R Core Team R: a language and environment for statistical computing. Vienna, Foundation for Statistical Computing; 2020 https://www.r-project.org/
  239. Wickham H. ggplot2: Elegant Graphics for Data Analysis. 2nd ed Cham: Springer; 2016 p isbn [View Article]
    [Google Scholar]
  240. Robertson J, Nash JHE. MOB-suite: software tools for clustering, reconstruction and typing of plasmids from draft assemblies. Microb Genom 2018; 4:8 [View Article] [PubMed]
    [Google Scholar]
  241. Doumith M, Dhanji H, Ellington MJ, Hawkey P, Woodford N. Characterization of plasmids encoding extended-spectrum β-lactamases and their addiction systems circulating among Escherichia coli clinical isolates in the UK. J Antimicrob Chemother 2012; 67:878–885 [View Article] [PubMed]
    [Google Scholar]
  242. Ramirez MS, Iriarte A, Reyes-Lamothe R, Sherratt DJ, Tolmasky ME. Small Klebsiella pneumoniae plasmids: neglected contributors to antibiotic resistance. Front Microbiol 2019; 10:2182 [View Article]
    [Google Scholar]
  243. San Millan A, Santos-Lopez A, Ortega-Huedo R, Bernabe-Balas C, Kennedy SP et al. Small-plasmid-mediated antibiotic resistance is enhanced by increases in plasmid copy number and bacterial fitness. Antimicrob Agents Chemother 2015; 59:3335–3341 [View Article] [PubMed]
    [Google Scholar]
  244. Sandegren L, Andersson DI. Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 2009; 7:578–588 [View Article] [PubMed]
    [Google Scholar]
  245. Rodriguez-Beltran J, Hernandez-Beltran JCR, DelaFuente J, Escudero JA, Fuentes-Hernandez A et al. Multicopy plasmids allow bacteria to escape from fitness trade-offs during evolutionary innovation. Nat Ecol Evol 2018; 2:873–881 [View Article] [PubMed]
    [Google Scholar]
  246. Lopatkin AJ, Meredith HR, Srimani JK, Pfeiffer C, Durrett R et al. Persistence and reversal of plasmid-mediated antibiotic resistance. Nat Commun 2017; 8:1689 [View Article] [PubMed]
    [Google Scholar]
  247. DelaFuente J, Toribio-Celestino L, Santos-Lopez A, León-Sampedro R, Alonso-Del Valle A et al. Within-patient evolution of plasmid-mediated antimicrobial resistance. Nat Ecol Evol 2022; 6:1980–1991 [View Article] [PubMed]
    [Google Scholar]
  248. León-Sampedro R, DelaFuente J, Díaz-Agero C, Crellen T, Musicha P et al. Pervasive transmission of a carbapenem resistance plasmid in the gut microbiota of hospitalized patients. Nat Microbiol 2021; 6:606–616 [View Article] [PubMed]
    [Google Scholar]
  249. Conteville LC, Vicente ACP. A plasmid network from the gut microbiome of semi-isolated human groups reveals unique and shared metabolic and virulence traits. Sci Rep 2022; 12:12102 [View Article] [PubMed]
    [Google Scholar]
  250. Schwalbe RS, Hoge CW, Morris JG Jr, O’Hanlon PN, Crawford RA et al. In vivo selection for transmissible drug resistance in Salmonella typhi during antimicrobial therapy. Antimicrob Agents Chemother 1990; 34:161–163 [View Article] [PubMed]
    [Google Scholar]
  251. Archambaud M, Gerbaud G, Labau E, Marty N, Courvalin P. Possible in-vivo transfer of beta-lactamase TEM-3 from Klebsiella pneumoniae to Salmonella kedougou. J Antimicrob Chemother 1991; 27:427–436 [View Article] [PubMed]
    [Google Scholar]
  252. Carattoli A. Plasmid-mediated antimicrobial resistance in Salmonella enterica. Curr Issues Mol Biol 2003; 5:113–122 [View Article] [PubMed]
    [Google Scholar]
  253. Boekhoud IM, Hornung BVH, Sevilla E, Harmanus C, Bos-Sanders IMJG et al. Plasmid-mediated metronidazole resistance in Clostridioides difficile. Nat Commun 2020; 11:598 [View Article] [PubMed]
    [Google Scholar]
  254. Austin DJ, Kakehashi M, Anderson RM. The transmission dynamics of antibiotic–resistant bacteria: the relationship between resistance in commensal organisms and antibiotic consumption. Proc R Soc Lond B 1997; 264:1629–1638 [View Article]
    [Google Scholar]
  255. De Gelder L, Ponciano JM, Abdo Z, Joyce P, Forney LJ et al. Combining mathematical models and statistical methods to understand and predict the dynamics of antibiotic-sensitive mutants in a population of resistant bacteria during experimental evolution. Genetics 2004; 168:1131–1144 [View Article] [PubMed]
    [Google Scholar]
  256. González V, Santamaría RI, Bustos P, Hernández-González I, Medrano-Soto A et al. The partitioned Rhizobium etli genome: genetic and metabolic redundancy in seven interacting replicons. Proc Natl Acad Sci 2006; 103:3834–3839 [View Article] [PubMed]
    [Google Scholar]
  257. González V, Bustos P, Ramírez-Romero MA, Medrano-Soto A, Salgado H et al. The mosaic structure of the symbiotic plasmid of Rhizobium etli CFN42 and its relation to other symbiotic genome compartments. Genome Biol 2003; 4:R36 [View Article] [PubMed]
    [Google Scholar]
  258. Tun-Garrido C, Bustos P, González V, Brom S. Conjugative transfer of p42a from Rhizobium etli CFN42, which is required for mobilization of the symbiotic plasmid, is regulated by quorum sensing. J Bacteriol 2003; 185:1681–1692 [View Article] [PubMed]
    [Google Scholar]
  259. Watve MM, Dahanukar N, Watve MG. Sociobiological control of plasmid copy number in bacteria. PLoS One 2010; 5:e9328 [View Article] [PubMed]
    [Google Scholar]
  260. Ilhan J, Kupczok A, Woehle C, Wein T, Hülter NF et al. Segregational drift and the interplay between plasmid copy number and evolvability. Mol Biol Evol 2019; 36:472–486 [View Article] [PubMed]
    [Google Scholar]
  261. Garoña A, Hülter NF, Romero Picazo D, Dagan T. Segregational drift constrains the evolutionary rate of prokaryotic plasmids. Mol Biol Evol 2021; 38:5610–5624 [View Article] [PubMed]
    [Google Scholar]
  262. Rodríguez-Beltrán J, Sørum V, Toll-Riera M, de la Vega C, Peña-Miller R et al. Genetic dominance governs the evolution and spread of mobile genetic elements in bacteria. Proc Natl Acad Sci 2020; 117:15755–15762 [View Article] [PubMed]
    [Google Scholar]
  263. Leclerc QJ, Lindsay JA, Knight GM. Mathematical modelling to study the horizontal transfer of antimicrobial resistance genes in bacteria: current state of the field and recommendations. J R Soc Interface 2019; 16:20190260 [View Article] [PubMed]
    [Google Scholar]
  264. Tazzyman SJ, Bonhoeffer S. Why there are no essential genes on plasmids. Mol Biol Evol 2015; 32:3079–3088 [View Article] [PubMed]
    [Google Scholar]
  265. Mc Ginty SE, Rankin DJ, Brown SP. Horizontal gene transfer and the evolution of bacterial cooperation. Evolution 2011; 65:21–32 [View Article] [PubMed]
    [Google Scholar]
  266. Simonsen L, Gordon DM, Stewart FM, Levin BR. Estimating the rate of plasmid transfer: an end-point method. J Gen Microbiol 1990; 136:2319–2325 [View Article] [PubMed]
    [Google Scholar]
  267. Sheppard RJ, Beddis AE, Barraclough TG. The role of hosts, plasmids and environment in determining plasmid transfer rates: a meta-analysis. Plasmid 2020; 108:102489 [View Article] [PubMed]
    [Google Scholar]
  268. Kosterlitz O, Muñiz Tirado A, Wate C, Elg C, Bozic I et al. Estimating the transfer rates of bacterial plasmids with an adapted Luria-Delbrück fluctuation analysis. PLoS Biol 2022; 20:e3001732 [View Article] [PubMed]
    [Google Scholar]
  269. Huisman JS, Benz F, Duxbury SJN, de Visser JAGM, Hall AR et al. Estimating plasmid conjugation rates: a new computational tool and a critical comparison of methods. Plasmid 2022; 121:102627 [View Article] [PubMed]
    [Google Scholar]
  270. Kosterlitz O, Huisman JS. Guidelines for the estimation and reporting of plasmid conjugation rates. Plasmid 2023; 126:102685 [View Article] [PubMed]
    [Google Scholar]
  271. Luria SE, Delbrück M. Mutations of bacteria from virus sensitivity to virus resistance. Genetics 1943; 28:491–511 [View Article] [PubMed]
    [Google Scholar]
  272. Göttig S, Gruber TM, Stecher B, Wichelhaus TA, Kempf VAJ. In vivo horizontal gene transfer of the carbapenemase OXA-48 during a nosocomial outbreak. Clin Infect Dis 2015; 60:1808–1815 [View Article] [PubMed]
    [Google Scholar]
  273. Fischer EAJ, Dierikx CM, van Essen-Zandbergen A, Mevius D, Stegeman A et al. Competition between Escherichia coli populations with and without plasmids carrying a gene encoding extended-spectrum beta-lactamase in the broiler chicken gut. Appl Environ Microbiol 2019; 85:e00892-19 [View Article] [PubMed]
    [Google Scholar]
  274. Ding M, Ye Z, Liu L, Wang W, Chen Q et al. Subinhibitory antibiotic concentrations promote the horizontal transfer of plasmid-borne resistance genes from Klebsiellae pneumoniae to Escherichia coli. Front Microbiol 2022; 13: [View Article]
    [Google Scholar]
  275. Sheppard RJ, Barraclough TG, Jansen VAA. The evolution of plasmid transfer rate in bacteria and its effect on plasmid persistence. Am Nat 2021; 198:473–488 [View Article] [PubMed]
    [Google Scholar]
  276. Dimitriu T. Evolution of horizontal transmission in antimicrobial resistance plasmids. Microbiology 2022; 168:001214 [View Article] [PubMed]
    [Google Scholar]
  277. Simonsen L. The existence conditions for bacterial plasmids: theory and reality. Microb Ecol 1991; 22:187–205 [View Article]
    [Google Scholar]
  278. MacLean RC, San Millan A. Microbial evolution: towards resolving the plasmid paradox. Curr Biol 2015; 25:R764–7 [View Article] [PubMed]
    [Google Scholar]
  279. Carroll AC, Wong A. Plasmid persistence: costs, benefits, and the plasmid paradox. Can J Microbiol 2018; 64:293–304 [View Article] [PubMed]
    [Google Scholar]
  280. Slater FR, Bailey MJ, Tett AJ, Turner SL. Progress towards understanding the fate of plasmids in bacterial communities. FEMS Microbiol Ecol 2008; 66:3–13 [View Article] [PubMed]
    [Google Scholar]
  281. Dionisio F, Matic I, Radman M, Rodrigues OR, Taddei F. Plasmids spread very fast in heterogeneous bacterial communities. Genetics 2002; 162:1525–1532 [View Article] [PubMed]
    [Google Scholar]
  282. diCenzo GC, Finan TM. The divided bacterial genome: structure, function, and evolution. Microbiol Mol Biol Rev 2017; 81:e00019–17 [View Article]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001362
Loading
/content/journal/micro/10.1099/mic.0.001362
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error