1887

Abstract

Pharmacokinetic–pharmacodynamic (PKPD) models, which describe how drug concentrations change over time and how that affects pathogen growth, have proven highly valuable in designing optimal drug treatments aimed at bacterial eradication. However, the fast rise of antimicrobial resistance calls for increased focus on an additional treatment optimization criterion: avoidance of resistance evolution. We demonstrate here how coupling PKPD and population genetics models can be used to determine treatment regimens that minimize the potential for antimicrobial resistance evolution. Importantly, the resulting modelling framework enables the assessment of resistance evolution in response to dynamic selection pressures, including changes in antimicrobial concentration and the emergence of adaptive phenotypes. Using antibiotics and antimicrobial peptides as an example, we discuss the empirical evidence and intuition behind individual model parameters. We further suggest several extensions of this framework that allow a more comprehensive and realistic prediction of bacterial escape from antimicrobials through various phenotypic and genetic mechanisms.

Funding
This study was supported by the:
  • Eidgenössische Technische Hochschule Zürich (Award 19-2-FEL-74)
    • Principle Award Recipient: ClaudiaIgler
  • Volkswagen Foundation (Award 96517)
    • Principle Award Recipient: NotApplicable
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License. This article was made open access via a Publish and Read agreement between the Microbiology Society and the corresponding author’s institution.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.001368
2023-07-31
2024-05-17
Loading full text...

Full text loading...

/deliver/fulltext/micro/169/7/mic001368.html?itemId=/content/journal/micro/10.1099/mic.0.001368&mimeType=html&fmt=ahah

References

  1. Witzany C, Bonhoeffer S, Rolff J. Is antimicrobial resistance evolution accelerating?. PLoS Pathog 2020; 16:e1008905 [View Article] [PubMed]
    [Google Scholar]
  2. Hegreness M, Shoresh N, Damian D, Hartl D, Kishony R. Accelerated evolution of resistance in multidrug environments. Proc Natl Acad Sci 2008; 105:13977–13981 [View Article]
    [Google Scholar]
  3. Dean Z, Maltas J, Wood KB. Antibiotic interactions shape short-term evolution of resistance in E. faecalis. bioRxiv 2019; 641217: [View Article]
    [Google Scholar]
  4. Michel JB, Yeh PJ, Chait R, Moellering RC, Kishony R. Drug interactions modulate the potential for evolution of resistance. Proc Natl Acad Sci 2008; 105:14918–14923 [View Article] [PubMed]
    [Google Scholar]
  5. Chait R, Craney A, Kishony R. Antibiotic interactions that select against resistance. Nature 2007; 446:668–671 [View Article] [PubMed]
    [Google Scholar]
  6. Nielsen EI, Friberg LE. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 2013; 65:1053–1090 [View Article] [PubMed]
    [Google Scholar]
  7. Clarelli F, Liang J, Martinecz A, Heiland I, Abel Zur Wiesch P. Multi-scale modeling of drug binding kinetics to predict drug efficacy. Cell Mol Life Sci 2020; 77:381–394 [View Article] [PubMed]
    [Google Scholar]
  8. Drusano GL. Antimicrobial pharmacodynamics: critical interactions of “bug and drug.”. Nat Rev Microbiol 2004; 2:289–300 [View Article] [PubMed]
    [Google Scholar]
  9. Campion JJ, Chung P, McNamara PJ, Titlow WB, Evans ME. Pharmacodynamic modeling of the evolution of levofloxacin resistance in Staphylococcus aureus. Antimicrob Agents Chemother 2005; 49:2189–2199 [View Article] [PubMed]
    [Google Scholar]
  10. Lipsitch M, Levin BR. The population dynamics of antimicrobial chemotherapy. Antimicrob Agents Chemother 1997; 41:363–373 [View Article]
    [Google Scholar]
  11. Levin BR, Udekwu KI. Population dynamics of antibiotic treatment: a mathematical model and hypotheses for time-kill and continuous-culture experiments. Antimicrob Agents Chemother 2010; 54:3414–3426 [View Article] [PubMed]
    [Google Scholar]
  12. Levin BR, Udekwu KI. Population dynamics of antibiotic treatment: a mathematical model and hypotheses for time-kill and continuous-culture experiments. Antimicrob Agents Chemother 2010; 54:3414–3426 [View Article] [PubMed]
    [Google Scholar]
  13. Igler C, Rolff J, Regoes R. Multi-step vs. single-step resistance evolution under different drugs, pharmacokinetics, and treatment regimens. Elife 2021; 10:e64116 [View Article] [PubMed]
    [Google Scholar]
  14. Witzany C, Regoes RR, Igler C. Assessing the relative importance of bacterial resistance, persistence and hyper-mutation for antibiotic treatment failure. Proc R Soc B 2022; 289: [View Article]
    [Google Scholar]
  15. Yu G, Baeder D, Regoes R, Rolff J. Predicting drug resistance evolution: insights from antimicrobial peptides and antibioitcs. Proc R Soc B 2018; 285: [View Article]
    [Google Scholar]
  16. Nyhoegen C, Uecker H. Sequential antibiotic therapy in the laboratory and in the patient. J R Soc Interface 2023; 20:20220793 [View Article] [PubMed]
    [Google Scholar]
  17. Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am 2009; 23:791–815 [View Article] [PubMed]
    [Google Scholar]
  18. Mould DR, Upton RN. Basic concepts in population modeling, simulation, and model-based drug development-part 2: introduction to pharmacokinetic modeling methods. In CPT Pharmacometrics Syst Pharmacol vol 2 2013 p e38 [PubMed]
    [Google Scholar]
  19. Czock D, Keller F. Mechanism-based pharmacokinetic-pharmacodynamic modeling of antimicrobial drug effects. J Pharmacokinet Pharmacodyn 2007; 34:727–751 [View Article] [PubMed]
    [Google Scholar]
  20. Tam VH, Louie A, Deziel MR, Liu W, Drusano GL. The relationship between quinolone exposures and resistance amplification is characterized by an inverted U: a new paradigm for optimizing pharmacodynamics to counterselect resistance. Antimicrob Agents Chemother 2007; 51:744–747 [View Article] [PubMed]
    [Google Scholar]
  21. Foo J, Michor F. Evolution of resistance to targeted anti-cancer therapies during continuous and pulsed administration strategies. PLoS Comput Biol 2009; 5: [View Article]
    [Google Scholar]
  22. Levison ME, Levison JH. Pharmacokinetics and pharmacodynamics of antibacterial agents. Infect Dis Clin North Am 2009; 23:791–815 [View Article] [PubMed]
    [Google Scholar]
  23. Upton RN, Mould DR. Basic concepts in population modeling, simulation, and model-based drug development: part 3-introduction to pharmacodynamic modeling methods. CPT Pharmacometrics Syst Pharmacol 2014; 3:e88 [View Article] [PubMed]
    [Google Scholar]
  24. Geli P, Laxminarayan R, Dunne M, Smith DL. “One-size-fits-all”? Optimizing treatment duration for bacterial infections. PLoS One 2012; 7:e29838 [View Article] [PubMed]
    [Google Scholar]
  25. Nielsen EI, Friberg LE. Pharmacokinetic-pharmacodynamic modeling of antibacterial drugs. Pharmacol Rev 2013; 65:1053–1090 [View Article] [PubMed]
    [Google Scholar]
  26. Regoes RR, Wiuff C, Zappala RM, Garner KN, Baquero F et al. Pharmacodynamic functions: a multiparameter approach to the design of antibiotic treatment regimens. Antimicrob Agents Chemother 2004; 48:3670–3676 [View Article]
    [Google Scholar]
  27. Wen X, Gehring R, Stallbaumer A, Riviere JE, Volkova VV. Limitations of MIC as sole metric of pharmacodynamic response across the range of antimicrobial susceptibilities within a single bacterial species. Sci Rep 2016; 6:1–8 [View Article]
    [Google Scholar]
  28. Mouton JW, Muller AE, Canton R, Giske CG, Kahlmeter G et al. MIC-based dose adjustment: facts and fables. J Antimicrob Chemother 2018; 73:564–568 [View Article] [PubMed]
    [Google Scholar]
  29. Brauner A, Fridman O, Gefen O, Balaban NQ. Distinguishing between resistance, tolerance and persistence to antibiotic treatment. Nat Rev Microbiol 2016; 14:320–330 [View Article] [PubMed]
    [Google Scholar]
  30. Kussell E, Kishony R, Balaban NQ, Leibler S. Bacterial persistence: a model of survival in changing environments. Genetics 2005; 169:1807–1814 [View Article] [PubMed]
    [Google Scholar]
  31. Yu G, Baeder DY, Regoes RR, Rolff J. Combination effects of antimicrobial peptides. Antimicrob Agents Chemother 2016; 60:1717–1724 [View Article]
    [Google Scholar]
  32. Fantner GE, Barbero RJ, Gray DS, Belcher AM. Kinetics of antimicrobial peptide activity measured on individual bacterial cells using high-speed atomic force microscopy. Nat Nanotechnol 2010; 5:280–285 [View Article] [PubMed]
    [Google Scholar]
  33. Andersson DI, Hughes D, Kubicek-Sutherland JZ. Mechanisms and consequences of bacterial resistance to antimicrobial peptides. Drug Resist Updat 2016; 26:43–57 [View Article] [PubMed]
    [Google Scholar]
  34. Wistrand-Yuen E, Knopp M, Hjort K, Koskiniemi S, Berg OG et al. Evolution of high-level resistance during low-level antibiotic exposure. Nat Commun 2018; 9:1599 [View Article] [PubMed]
    [Google Scholar]
  35. Kohanski MA, DePristo MA, Collins JJ. Sublethal antibiotic treatment leads to multidrug resistance via radical-induced mutagenesis. Mol Cell 2010; 37:311–320 [View Article] [PubMed]
    [Google Scholar]
  36. Gullberg E, Cao S, Berg OG, Ilbäck C, Sandegren L et al. Selection of resistant bacteria at very low antibiotic concentrations. PLoS Pathog 2011; 7:e1002158 [View Article] [PubMed]
    [Google Scholar]
  37. Krašovec R, Richards H, Gifford DR, Hatcher C, Faulkner KJ et al. Spontaneous mutation rate is a plastic trait associated with population density across domains of life. PLoS Biol 2017; 15:e2002731 [View Article] [PubMed]
    [Google Scholar]
  38. Volkova VV, Lanzas C, Lu Z, Gröhn YT. Mathematical model of plasmid-mediated resistance to ceftiofur in commensal enteric Escherichia coli of cattle. PLoS One 2012; 7:e36738 [View Article] [PubMed]
    [Google Scholar]
  39. Jumbe N, Louie A, Leary R, Liu W, Deziel MR et al. Application of a mathematical model to prevent in vivo amplification of antibiotic-resistant bacterial populations during therapy. J Clin Invest 2003; 112:275–285 [View Article] [PubMed]
    [Google Scholar]
  40. Day T, Huijben S, Read AF. Is selection relevant in the evolutionary emergence of drug resistance?. Trends Microbiol 2015; 23:126–133 [View Article] [PubMed]
    [Google Scholar]
  41. Andersson DI, Hughes D. Microbiological effects of sublethal levels of antibiotics. Nat Rev Microbiol 2014; 12:465–478 [View Article] [PubMed]
    [Google Scholar]
  42. Alexander HK, MacLean RC. Stochastic bacterial population dynamics restrict the establishment of antibiotic resistance from single cells. Proc Natl Acad Sci 2020; 117:19455–19464 [View Article]
    [Google Scholar]
  43. Firsov AA, Vostrov SN, Lubenko IY, Drlica K, Portnoy YA et al. In vitro pharmacodynamic evaluation of the mutant selection window hypothesis using four fluoroquinolones against Staphylococcus aureus. Antimicrob Agents Chemother 2003; 47:1604–1613 [View Article] [PubMed]
    [Google Scholar]
  44. Zhanel GG, Trapp S, Gin AS, DeCorby M, Lagacé-Wiens PRS et al. Dalbavancin and telavancin: novel lipoglycopeptides for the treatment of Gram-positive infections. Expert Rev Anti Infect Ther 2008; 6:67–81 [View Article] [PubMed]
    [Google Scholar]
  45. Bork JT, Heil EL, Berry S, Lopes E, Davé R et al. Dalbavancin use in vulnerable patients receiving outpatient parenteral antibiotic therapy for invasive gram-positive infections. Infect Dis Ther 2019; 8:171–184 [View Article] [PubMed]
    [Google Scholar]
  46. Kay K, Hastings IM, Ferguson N. Improving pharmacokinetic-pharmacodynamic modeling to investigate anti-infective chemotherapy with application to the current generation of antimalarial drugs. PLoS Comput Biol 2013; 9:e1003151 [View Article]
    [Google Scholar]
  47. Bengtsson-Palme J, Kristiansson E, Larsson DGJ. Environmental factors influencing the development and spread of antibiotic resistance. FEMS Microbiol Rev 2018; 42:68–80 [View Article] [PubMed]
    [Google Scholar]
  48. Pezzani MD. Evidence based review on optimal duration of antibiotic therapy for bacterial infections to support antimicrobial stewardship recommendations WHO Secretariat Nicola Magrini. In Secretary of the Expert Committee on Selection and Use of Essential Medicines 2019 pp 1–28
    [Google Scholar]
  49. Drusano GL, Liu W, Brown DL, Rice LB, Louie A. Impact of short-course quinolone therapy on susceptible and resistant populations of Staphylococcus aureus. J Infect Dis 2009; 199:219–226 [View Article] [PubMed]
    [Google Scholar]
  50. Martinez MN, Papich MG, Drusano GL. Dosing regimen matters: the importance of early intervention and rapid attainment of the pharmacokinetic/pharmacodynamic target. Antimicrob Agents Chemother 2012; 56:2795–2805 [View Article]
    [Google Scholar]
  51. Beceiro A, Tomás M, Bou G. Antimicrobial resistance and virulence: a successful or deleterious association in the bacterial world?. Clin Microbiol Rev 2013; 26:185–230 [View Article] [PubMed]
    [Google Scholar]
  52. Andersson DI, Hughes D. Antibiotic resistance and its cost: is it possible to reverse resistance?. Nat Rev Microbiol 2010; 8:260–271 [View Article] [PubMed]
    [Google Scholar]
  53. Durão P, Balbontín R, Gordo I. Evolutionary mechanisms shaping the maintenance of antibiotic resistance. Trends Microbiol 2018; 26:677–691 [View Article] [PubMed]
    [Google Scholar]
  54. Dunai A, Spohn R, Farkas Z, Lázár V, Györkei Á et al. Rapid decline of bacterial drug-resistance in an antibiotic-free environment through phenotypic reversion. Elife 2019; 8:1–20 [View Article] [PubMed]
    [Google Scholar]
  55. El Shazely B, Yu G, Johnston PR, Rolff J. Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC. Front Microbiol 2020; 11:103 [View Article] [PubMed]
    [Google Scholar]
  56. Mookherjee N, Anderson MA, Haagsman HP, Davidson DJ. Antimicrobial host defence peptides: functions and clinical potential. Nat Rev Drug Discov 2020; 19:311–332 [View Article] [PubMed]
    [Google Scholar]
  57. Lazzaro BP, Zasloff M, Rolff J. Antimicrobial peptides: application informed by evolution. Science 2020; 368:eaau5480 [View Article] [PubMed]
    [Google Scholar]
  58. Zasloff M. Antimicrobial peptides of multicellular organisms. Nature 2002; 415:389–395 [View Article] [PubMed]
    [Google Scholar]
  59. Fjell CD, Hiss JA, Hancock REW, Schneider G. Designing antimicrobial peptides: form follows function. Nat Rev Drug Discov 2012; 11:37–51 [View Article]
    [Google Scholar]
  60. Yeaman MR, Yount NY. Mechanisms of antimicrobial peptide action and resistance. Pharmacol Rev 2003; 55:27–55 [View Article] [PubMed]
    [Google Scholar]
  61. Rodríguez-Rojas A, Makarova O, Rolff JA. Antimicrobials, stress and mutagenesis. PLoS Pathog 2014; 10:e1004445 [View Article] [PubMed]
    [Google Scholar]
  62. Petrosino JF, Galhardo RS, Morales LD, Rosenberg SM. Stress-induced beta-lactam antibiotic resistance mutation and sequences of stationary-phase mutations in the Escherichia coli chromosome. J Bacteriol 2009; 191:5881–5889 [View Article] [PubMed]
    [Google Scholar]
  63. Rodríguez-Rojas A, Makarova O, Müller U, Rolff J. Cationic peptides facilitate iron-induced mutagenesis in bacteria. PLoS Genet 2015; 11:e1005546 [View Article] [PubMed]
    [Google Scholar]
  64. Han Y, Gao Z, Chen L, Kang L, Huang W et al. Multifunctional oral delivery systems for enhanced bioavailability of therapeutic peptides/proteins. Acta Pharm Sin B 2019; 9:902–922 [View Article] [PubMed]
    [Google Scholar]
  65. Allen GP, Kaatz GW, Rybak MJ. Activities of mutant prevention concentration-targeted moxifloxacin and levofloxacin against Streptococcus pneumoniae in an in vitro pharmacodynamic model. Antimicrob Agents Chemother 2003; 47:2606–2614 [View Article] [PubMed]
    [Google Scholar]
  66. Haine ER, Pollitt LC, Moret Y, Siva-Jothy MT, Rolff J. Temporal patterns in immune responses to a range of microbial insults (Tenebrio molitor). J Insect Physiol 2008; 54:1090–1097 [View Article] [PubMed]
    [Google Scholar]
  67. Böttger R, Hoffmann R, Knappe D. Differential stability of therapeutic peptides with different proteolytic cleavage sites in blood, plasma and serum. PLoS One 2017; 12:e0178943 [View Article] [PubMed]
    [Google Scholar]
  68. Kuti JL. Optimizing antimicrobial pharmacodynamics: a guide for your stewardship program. Revista Médica Clínica Las Condes 2016; 27:615–624 [View Article]
    [Google Scholar]
  69. Mohammad H, Thangamani S, Seleem MN. Antimicrobial peptides and peptidomimetics - potent therapeutic allies for staphylococcal infections. Curr Pharm Des 2015; 21:2073–2088 [View Article] [PubMed]
    [Google Scholar]
  70. Spohn R, Daruka L, Lázár V, Martins A, Vidovics F et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun 2019; 10:4538 [View Article] [PubMed]
    [Google Scholar]
  71. Mohamed MF, Abdelkhalek A, Seleem MN. Evaluation of short synthetic antimicrobial peptides for treatment of drug-resistant and intracellular Staphylococcus aureus. Sci Rep 2016; 6:29707 [View Article] [PubMed]
    [Google Scholar]
  72. Inui Kishi RN, Stach-Machado D, Singulani J de L, dos Santos CT, Fusco-Almeida AM et al. Evaluation of cytotoxicity features of antimicrobial peptides with potential to control bacterial diseases of citrus. PLoS One 2018; 13:e0203451 [View Article]
    [Google Scholar]
  73. Forde É, Schütte A, Reeves E, Greene C, Humphreys H et al. Differential in vitro and in vivo toxicities of antimicrobial peptide prodrugs for potential use in cystic fibrosis. Antimicrob Agents Chemother 2016; 60:2813–2821 [View Article] [PubMed]
    [Google Scholar]
  74. Chen CH, Lu TK. Development and challenges of antimicrobial peptides for therapeutic applications. Antibiotics 2020; 9:24 [View Article] [PubMed]
    [Google Scholar]
  75. Sekirov I, Russell SL, Antunes LCM, Finlay BB. Gut microbiota in health and disease. Physiol Rev 2010; 90:859–904 [View Article] [PubMed]
    [Google Scholar]
  76. Zhang S, Chen DC, Chen LM. Facing a new challenge: the adverse effects of antibiotics on gut microbiota and host immunity. Chin Med J 2019; 132:1135–1138 [View Article] [PubMed]
    [Google Scholar]
  77. Corvaisier S, Maire PH, Bouvier d’yvoire MY, Barbaut X, Bleyzac N et al. Comparisons between antimicrobial pharmacodynamic indices and bacterial killing as described by using the zhi model. Antimicrob Agents Chemother 1998; 42:1731–1737 [View Article]
    [Google Scholar]
  78. Zhao X, Drlica K. Restricting the selection of antibiotic-resistant mutant bacteria: measurement and potential use of the mutant selection window. J Infect Dis 2002; 185:561–565 [View Article] [PubMed]
    [Google Scholar]
  79. Zinner SH, Lubenko IY, Gilbert D, Simmons K, Zhao X et al. Emergence of resistant Streptococcus pneumoniae in an in vitro dynamic model that simulates moxifloxacin concentrations inside and outside the mutant selection window: related changes in susceptibility, resistance frequency and bacterial killing. J Antimicrob Chemother 2003; 52:616–622 [View Article] [PubMed]
    [Google Scholar]
  80. Olofsson SK, Cars O. Optimizing drug exposure to minimize selection of antibiotic resistance. Clin Infect Dis 2007; 45 Suppl 2:S129–36 [View Article] [PubMed]
    [Google Scholar]
  81. Cui J, Liu Y, Wang R, Tong W, Drlica K et al. The mutant selection window in rabbits infected with Staphylococcus aureus. J Infect Dis 2006; 194:1601–1608 [View Article] [PubMed]
    [Google Scholar]
  82. Allen GP, Kaatz GW, Rybak MJ. In vitro activities of mutant prevention concentration-targeted concentrations of fluoroquinolones against Staphylococcus aureus in a pharmacodynamic model. Int J Antimicrob Agents 2004; 24:150–160 [View Article] [PubMed]
    [Google Scholar]
  83. Olofsson SK, Marcusson LL, Komp Lindgren P, Hughes D, Cars O. Selection of ciprofloxacin resistance in Escherichia coli in an in vitro kinetic model: relation between drug exposure and mutant prevention concentration. J Antimicrob Chemother 2006; 57:1116–1121 [View Article] [PubMed]
    [Google Scholar]
  84. Müller M, dela Peña A, Derendorf H. Issues in pharmacokinetics and pharmacodynamics of anti-infective agents: distribution in tissue. Antimicrob Agents Chemother 2004; 48:1441–1453 [View Article]
    [Google Scholar]
  85. Craig WA. Pharmacokinetic/pharmacodynamic parameters: rationale for antibacterial dosing of mice and men. Clin Infect Dis 1998; 26:1–10 [View Article] [PubMed]
    [Google Scholar]
  86. Roversi D, Luca V, Aureli S, Park Y, Mangoni ML et al. How many antimicrobial peptide molecules kill a bacterium? The case of PMAP-23. ACS Chem Biol 2014; 9:2003–2007 [View Article] [PubMed]
    [Google Scholar]
  87. Bolintineanu D, Hazrati E, Davis HT, Lehrer RI, Kaznessis YN. Antimicrobial mechanism of pore-forming protegrin peptides: 100 pores to kill E. coli. Peptides 2010; 31:1–8 [View Article] [PubMed]
    [Google Scholar]
  88. Brogden KA. Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol 2005; 3:238–250 [View Article] [PubMed]
    [Google Scholar]
  89. Bergen PJ, Li J, Nation RL. Dosing of colistin-back to basic PK/PD. Curr Opin Pharmacol 2011; 11:464–469 [View Article] [PubMed]
    [Google Scholar]
  90. Zahir T, Camacho R, Vitale R, Ruckebusch C, Hofkens J et al. High-throughput time-resolved morphology screening in bacteria reveals phenotypic responses to antibiotics. Commun Biol 2019; 2:1–13 [View Article]
    [Google Scholar]
  91. Thorsted A, Tano E, Kaivonen K, Sjölin J, Friberg LE et al. Extension of Pharmacokinetic/Pharmacodynamic time-kill studies to include lipopolysaccharide/endotoxin release from Escherichia coli exposed to cefuroxime. Antimicrob Agents Chemother 2020; 64:1–12 [View Article] [PubMed]
    [Google Scholar]
  92. Chevereau G, Dravecká M, Batur T, Guvenek A, Ayhan DH et al. Quantifying the determinants of evolutionary dynamics leading to drug resistance. PLoS Biol 2015; 13:e1002299 [View Article] [PubMed]
    [Google Scholar]
  93. El Shazely B, Yu G, Johnston PR, Rolff J. Resistance evolution against antimicrobial peptides in Staphylococcus aureus alters pharmacodynamics beyond the MIC. Front Microbiol 2020; 11:103 [View Article] [PubMed]
    [Google Scholar]
  94. Melnyk AH, Wong A, Kassen R. The fitness costs of antibiotic resistance mutations. Evol Appl 2015; 8:273–283 [View Article] [PubMed]
    [Google Scholar]
  95. Perron GG, Zasloff M, Bell G. Experimental evolution of resistance to an antimicrobial peptide. Proc R Soc B 2006; 273:251–256 [View Article]
    [Google Scholar]
  96. Habets MGJL, Brockhurst MA. Therapeutic antimicrobial peptides may compromise natural immunity. Biol Lett 2012; 8:416–418 [View Article] [PubMed]
    [Google Scholar]
  97. Lofton H, Pränting M, Thulin E, Andersson DI. Mechanisms and fitness costs of resistance to antimicrobial peptides LL-37, CNY100HL and wheat germ histones. PLoS One 2013; 8:e68875 [View Article] [PubMed]
    [Google Scholar]
  98. Makarova O, Johnston P, Rodriguez-Rojas A, El Shazely B, Morales JM et al. Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides. Sci Rep 2018; 8:15359 [View Article] [PubMed]
    [Google Scholar]
  99. Kubicek-Sutherland JZ, Lofton H, Vestergaard M, Hjort K, Ingmer H et al. Antimicrobial peptide exposure selects for Staphylococcus aureus resistance to human defence peptides. J Antimicrob Chemother 2017; 72:115–127 [View Article] [PubMed]
    [Google Scholar]
  100. Pränting M, Negrea A, Rhen M, Andersson DI. Mechanism and fitness costs of PR-39 resistance in Salmonella enterica serovar Typhimurium LT2. Antimicrob Agents Chemother 2008; 52:2734–2741 [View Article] [PubMed]
    [Google Scholar]
  101. Dobson AJ, Purves J, Kamysz W, Rolff J. Comparing selection on S. aureus between antimicrobial peptides and common antibiotics. PLoS One 2013; 8:e76521 [View Article] [PubMed]
    [Google Scholar]
  102. Ramadhan AA, Hegedus E. Survivability of vancomycin resistant enterococci and fitness cost of vancomycin resistance acquisition. J Clin Pathol 2005; 58:744–746 [View Article] [PubMed]
    [Google Scholar]
  103. Spohn R, Daruka L, Lázár V, Martins A, Vidovics F et al. Integrated evolutionary analysis reveals antimicrobial peptides with limited resistance. Nat Commun 2019; 10:4538 [View Article] [PubMed]
    [Google Scholar]
  104. Dolzani L, Milan A, Scocchi M, Lagatolla C, Bressan R et al. Sub-MIC effects of a proline-rich antibacterial peptide on clinical isolates of Acinetobacter baumannii. J Med Microbiol 2019; 68:1253–1265 [View Article] [PubMed]
    [Google Scholar]
  105. Hughes D, Andersson DI. Evolutionary trajectories to antibiotic resistance. Annu Rev Microbiol 2017; 71:579–596 [View Article] [PubMed]
    [Google Scholar]
  106. Makarova O, Johnston P, Rodriguez-Rojas A, El Shazely B, Morales JM et al. Genomics of experimental adaptation of Staphylococcus aureus to a natural combination of insect antimicrobial peptides. Sci Rep 2018; 8:15359 [View Article] [PubMed]
    [Google Scholar]
  107. Drlica K. The mutant selection window and antimicrobial resistance. J Antimicrob Chemother 2003; 52:11–17 [View Article] [PubMed]
    [Google Scholar]
  108. Weinreich DM, Delaney NF, Depristo MA, Hartl DL. Darwinian evolution can follow only very few mutational paths to fitter proteins. Science 2006; 312:111–114 [View Article] [PubMed]
    [Google Scholar]
  109. Jochumsen N, Marvig RL, Damkiær S, Jensen RL, Paulander W et al. The evolution of antimicrobial peptide resistance in Pseudomonas aeruginosa is shaped by strong epistatic interactions. Nat Commun 2016; 7:13002 [View Article] [PubMed]
    [Google Scholar]
  110. Marcusson LL, Frimodt-Møller N, Hughes D. Interplay in the selection of fluoroquinolone resistance and bacterial fitness. PLoS Pathog 2009; 5:e1000541 [View Article] [PubMed]
    [Google Scholar]
  111. Jin DJ, Gross CA. Mapping and sequencing of mutations in the Escherichia coli rpoB gene that lead to rifampicin resistance. J Mol Biol 1988; 202:45–58 [View Article] [PubMed]
    [Google Scholar]
  112. Joo HS, Fu CI, Otto M. Bacterial strategies of resistance to antimicrobial peptides. Phil Trans R Soc B 2016; 371:20150292 [View Article]
    [Google Scholar]
  113. Baltz RH. Daptomycin: mechanisms of action and resistance, and biosynthetic engineering. Curr Opin Chem Biol 2009; 13:144–151 [View Article] [PubMed]
    [Google Scholar]
  114. Eyre-Walker A, Keightley PD. The distribution of fitness effects of new mutations. Nat Rev Genet 2007; 8:610–618 [View Article] [PubMed]
    [Google Scholar]
  115. Bataillon T, Zhang T, Kassen R. Cost of adaptation and fitness effects of beneficial mutations in Pseudomonas fluorescens. Genetics 2011; 189:939–949 [View Article] [PubMed]
    [Google Scholar]
  116. Davies J, Davies D. Origins and evolution of antibiotic resistance. Microbiol Mol Biol Rev 2010; 74:417–433 [View Article] [PubMed]
    [Google Scholar]
  117. Sun D, Jeannot K, Xiao Y, Knapp CW. Editorial: horizontal gene transfer mediated bacterial antibiotic resistance. Front Microbiol 2019; 10:565–591 [View Article]
    [Google Scholar]
  118. Norman A, Hansen LH, Sørensen SJ. Conjugative plasmids: vessels of the communal gene pool. Phil Trans R Soc B 2009; 364:2275–2289 [View Article]
    [Google Scholar]
  119. van Hoek AHAM, Mevius D, Guerra B, Mullany P, Roberts AP et al. Acquired antibiotic resistance genes: an overview. Front Microbio 2011; 2:1–27 [View Article]
    [Google Scholar]
  120. Kintses B, Méhi O, Ari E, Számel M, Györkei Á et al. Phylogenetic barriers to horizontal transfer of antimicrobial peptide resistance genes in the human gut microbiota. Nat Microbiol 2019; 4:447–458 [View Article]
    [Google Scholar]
  121. Forsberg KJ et al. The shared antibiotic resistome of. Science 2012; 337:1107–1111
    [Google Scholar]
  122. Tyers M, Wright GD. Drug combinations: a strategy to extend the life of antibiotics in the 21st century. Nat Rev Microbiol 2019; 17:141–155 [View Article] [PubMed]
    [Google Scholar]
  123. Baeder DY, Yu G, Hozé N, Rolff J, Regoes RR. Antimicrobial combinations: bliss independence and Loewe additivity derived from mechanistic multi-hit models. Phil Trans R Soc B 2016; 371:20150294 [View Article]
    [Google Scholar]
  124. Brill MJE, Kristoffersson AN, Zhao C, Nielsen EI, Friberg LE. Semi-mechanistic pharmacokinetic-pharmacodynamic modelling of antibiotic drug combinations. Clin Microbiol Infect 2018; 24:697–706 [View Article] [PubMed]
    [Google Scholar]
  125. Pearson RA, Wicha SG, Okour M. Drug combination modeling: methods and applications in drug development. J Clin Pharmacol 2023; 63:151–165 [View Article] [PubMed]
    [Google Scholar]
  126. Marxer M, Vollenweider V, Schmid-Hempel P. Insect antimicrobial peptides act synergistically to inhibit a trypanosome parasite. Philos Trans R Soc Lond B Biol Sci 2016; 371:20150302 [View Article] [PubMed]
    [Google Scholar]
  127. Maron B, Rolff J, Friedman J, Hayouka Z. Antimicrobial peptide combination can hinder resistance evolution. Microbiol Spectr 2022; 10:e0097322 [View Article] [PubMed]
    [Google Scholar]
  128. Rolff J, Schmid-Hempel P. Perspectives on the evolutionary ecology of arthropod antimicrobial peptides. Phil Trans R Soc B 2016; 371:20150297 [View Article]
    [Google Scholar]
  129. Lázár V, Nagy I, Spohn R, Csörgő B, Györkei Á et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat Commun 2014; 5:4352 [View Article] [PubMed]
    [Google Scholar]
  130. Zharkova MS, Orlov DS, Golubeva OY, Chakchir OB, Eliseev IE et al. Application of antimicrobial peptides of the innate immune system in combination with conventional antibiotics-a novel way to combat antibiotic resistance?. Front Cell Infect Microbiol 2019; 9:128 [View Article] [PubMed]
    [Google Scholar]
  131. Algburi A, Comito N, Kashtanov D, Dicks LMT, Chikindas ML. Control of biofilm formation: antibiotics and beyond. Appl Environ Microbiol 2017; 83:1–15 [View Article] [PubMed]
    [Google Scholar]
  132. Rahnamaeian M, Cytryńska M, Zdybicka-Barabas A, Dobslaff K, Wiesner J et al. Insect antimicrobial peptides show potentiating functional interactions against Gram-negative bacteria. Proc Biol Sci 2015; 282:20150293 [View Article] [PubMed]
    [Google Scholar]
  133. Barbosa C, Beardmore R, Schulenburg H, Jansen G. Antibiotic Combination Efficacy (ACE) networks for a Pseudomonas aeruginosa model. PLoS Biol 2018; 16:e2004356 [View Article] [PubMed]
    [Google Scholar]
  134. Russ D, Kishony R. Additivity of inhibitory effects in multidrug combinations. Nat Microbiol 2018; 3:1339–1345 [View Article] [PubMed]
    [Google Scholar]
  135. Katzir I, Cokol M, Aldridge BB, Alon U. Prediction of ultra-high-order antibiotic combinations based on pairwise interactions. PLoS Comput Biol 2019; 15:e1006774 [View Article] [PubMed]
    [Google Scholar]
  136. Yeh P, Tschumi AI, Kishony R. Functional classification of drugs by properties of their pairwise interactions. Nat Genet 2006; 38:489–494 [View Article]
    [Google Scholar]
  137. Ocampo PS, Lázár V, Papp B, Arnoldini M, Abel zur Wiesch P et al. Antagonism between bacteriostatic and bactericidal antibiotics is prevalent. Antimicrob Agents Chemother 2014; 58:4573–4582 [View Article]
    [Google Scholar]
  138. Ankomah P, Levin BR. Two-drug antimicrobial chemotherapy: a mathematical model and experiments with Mycobacterium marinum. PLoS Pathog 2012; 8:e1002487 [View Article] [PubMed]
    [Google Scholar]
  139. Dobson AJ, Purves J, Rolff J. Increased survival of experimentally evolved antimicrobial peptide-resistant Staphylococcus aureus in an animal host. Evol Appl 2014; 7:905–912 [View Article] [PubMed]
    [Google Scholar]
  140. Lázár V, Nagy I, Spohn R, Csörgő B, Györkei Á et al. Genome-wide analysis captures the determinants of the antibiotic cross-resistance interaction network. Nat Commun 2014; 5:4352 [View Article]
    [Google Scholar]
  141. Lázár V, Martins A, Spohn R, Daruka L, Grézal G et al. Antibiotic-resistant bacteria show widespread collateral sensitivity to antimicrobial peptides. Nat Microbiol 2018; 3:718–731 [View Article] [PubMed]
    [Google Scholar]
  142. Yan J, Bassler BL. Surviving as a community: antibiotic tolerance and persistence in bacterial biofilms. Cell Host & Microbe 2019; 26:15–21 [View Article]
    [Google Scholar]
  143. Bakkeren E, Diard M, Hardt W-D. Evolutionary causes and consequences of bacterial antibiotic persistence. Nat Rev Microbiol 2020; 18:479–490 [View Article]
    [Google Scholar]
  144. Cohen NR, Lobritz MA, Collins JJ. Microbial persistence and the road to drug resistance. Cell Host Microbe 2013; 13:632–642 [View Article]
    [Google Scholar]
  145. Barrett TC, Mok WWK, Murawski AM, Brynildsen MP. Enhanced antibiotic resistance development from fluoroquinolone persisters after a single exposure to antibiotic. Nat Commun 2019; 10:1177 [View Article]
    [Google Scholar]
  146. Sánchez-Romero MA, Casadesús J. Contribution of phenotypic heterogeneity to adaptive antibiotic resistance. Proc Natl Acad Sci 2014; 111:355–360 [View Article]
    [Google Scholar]
  147. Dhar N, McKinney JD. Microbial phenotypic heterogeneity and antibiotic tolerance. Curr Opin Microbiol 2007; 10:30–38 [View Article] [PubMed]
    [Google Scholar]
  148. Cohen NR, Lobritz MA, Collins JJ. Microbial persistence and the road to drug resistance. Cell Host Microbe 2013; 13:632–642 [View Article]
    [Google Scholar]
  149. Rodríguez-Rojas A, Baeder DY, Johnston P, Regoes RR, Rolff J. Bacteria primed by antimicrobial peptides develop tolerance and persist. PLoS Pathog 2021; 17:e1009443 [View Article] [PubMed]
    [Google Scholar]
  150. Windels EM, Michiels JE, Fauvart M, Wenseleers T, Van den Bergh B et al. Bacterial persistence promotes the evolution of antibiotic resistance by increasing survival and mutation rates. ISME J 2019; 13:1239–1251 [View Article]
    [Google Scholar]
  151. Johnson PJT, Levin BR, Malik HS. Pharmacodynamics, population dynamics, and the evolution of persistence in Staphylococcus aureus. PLoS Genet 2013; 9:e1003123 [View Article]
    [Google Scholar]
  152. Kwan BW, Valenta JA, Benedik MJ, Wood TK. Arrested protein synthesis increases persister-like cell formation. Antimicrob Agents Chemother 2013; 57:1468–1473 [View Article]
    [Google Scholar]
  153. Overhage J, Campisano A, Bains M, Torfs ECW, Rehm BHA et al. Human host defense peptide LL-37 prevents bacterial biofilm formation. Infect Immun 2008; 76:4176–4182 [View Article] [PubMed]
    [Google Scholar]
  154. Chung PY, Khanum R. Antimicrobial peptides as potential anti-biofilm agents against multidrug-resistant bacteria. J Microbiol Immunol Infect 2017; 50:405–410 [View Article] [PubMed]
    [Google Scholar]
  155. Hall CW, Mah T-F. Molecular mechanisms of biofilm-based antibiotic resistance and tolerance in pathogenic bacteria. FEMS Microbiol Rev 2017; 41:276–301 [View Article]
    [Google Scholar]
  156. Hathroubi S, Mekni MA, Domenico P, Nguyen D, Jacques M. Biofilms: microbial shelters against antibiotics. Microb Drug Resist 2017; 23:147–156 [View Article] [PubMed]
    [Google Scholar]
  157. Trubenová B, Roizman D, Rolff J, Regoes RR. Modeling polygenic antibiotic resistance evolution in biofilms. Front Microbiol 2022; 13: [View Article]
    [Google Scholar]
  158. Trubenová B, Roizman D, Moter A, Rolff J, Regoes RR. Population genetics, biofilm recalcitrance, and antibiotic resistance evolution. Trends Microbiol 2022; 30:841–852 [View Article] [PubMed]
    [Google Scholar]
  159. Abel Zur Wiesch P, Abel S, Gkotzis S, Ocampo P, Engelstädter J et al. Classic reaction kinetics can explain complex patterns of antibiotic action. Sci Transl Med 2015; 7:287ra73 [View Article] [PubMed]
    [Google Scholar]
  160. Nielsen EI, Khan DD, Cao S, Lustig U, Hughes D et al. Can a pharmacokinetic/pharmacodynamic (PKPD) model be predictive across bacterial densities and strains? External evaluation of a PKPD model describing longitudinal in vitro data. J Antimicrob Chemother 2017; 72:3108–3116 [View Article]
    [Google Scholar]
  161. Udekwu KI, Parrish N, Ankomah P, Baquero F, Levin BR. Functional relationship between bacterial cell density and the efficacy of antibiotics. J Antimicrob Chemother 2009; 63:745–757 [View Article] [PubMed]
    [Google Scholar]
  162. Brook I. Inoculum effect. Rev Infect Dis 1989; 11:361–368 [View Article] [PubMed]
    [Google Scholar]
  163. Savini F, Luca V, Bocedi A, Massoud R, Park Y et al. Cell-density dependence of host-defense peptide activity and selectivity in the presence of host cells. ACS Chem Biol 2017; 12:52–56 [View Article] [PubMed]
    [Google Scholar]
  164. Loffredo MR, Savini F, Bobone S, Casciaro B, Franzyk H et al. Inoculum effect of antimicrobial peptides. Proc Natl Acad Sci 2021; 118:e2014364118 [View Article]
    [Google Scholar]
  165. Baeder DY, Regoes RR. The pharmacodynamic inoculum effect from the perspective of bacterial population modeling. Pharmacol Toxicol 2021 [View Article] [PubMed]
    [Google Scholar]
  166. Clarelli F, Palmer A, Singh B, Storflor M, Lauksund S et al. Drug-target binding quantitatively predicts optimal antibiotic dose levels in quinolones. PLoS Comput Biol 2020; 16:e1008106 [View Article] [PubMed]
    [Google Scholar]
  167. Hemez C, Clarelli F, Palmer AC, Bleis C, Abel S et al. Mechanisms of antibiotic action shape the fitness landscapes of resistance mutations. Comput Struct Biotechnol J 2022; 20:4688–4703 [View Article] [PubMed]
    [Google Scholar]
  168. Savini F, Loffredo MR, Troiano C, Bobone S, Malanovic N et al. Binding of an antimicrobial peptide to bacterial cells: Interaction with different species, strains and cellular components. Biochim Biophys Acta Biomembr 2020; 1862:183291 [View Article] [PubMed]
    [Google Scholar]
  169. Wu F, Tan C. Dead bacterial absorption of antimicrobial peptides underlies collective tolerance. J R Soc Interface 2019; 16:20180701 [View Article]
    [Google Scholar]
  170. Andersson DI. Improving predictions of the risk of resistance development against new and old antibiotics. Clin Microbiol Infect 2015; 21:894–898 [View Article] [PubMed]
    [Google Scholar]
  171. Mustonen V, Lässig M. From fitness landscapes to seascapes: non-equilibrium dynamics of selection and adaptation. Trends in Genetics 2009; 25:111–119 [View Article]
    [Google Scholar]
  172. Gibaldi M, Perrier DP. Pharmacokinetics Second Edition Taylor & Francis; 1982
    [Google Scholar]
  173. Nestorov I. Whole body pharmacokinetic models. Clin Pharmacokinet 2003; 42:883–908 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.001368
Loading
/content/journal/micro/10.1099/mic.0.001368
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error