1887

Abstract

Mrp is a unique Na/H antiporter with a multicomponent structure consisting of the gene products. We have previously reported that the conserved and putative membrane-embedded Glu-113, Glu-657, Asp-743 and Glu-747 of MrpA (ShaA) are essential for the transport function. In this study, we further investigated the functional involvement of the equivalent conserved acidic residues of other Mrp proteins in heterologous and natural backgrounds. Asp-121 of MrpB and Glu-137 of MrpD were additionally identified to be essential for the transport function in both systems. Glu-137 of MrpD and Glu-113 of MrpA were found to be conserved in the homologous MrpD/MrpA proteins as well as in the homologous subunits of H-translocating primary active transporters such as Nuo and Mbh, suggesting their critical role in ion binding. The remaining essential acidic residues clustered in the C-terminal domain of MrpA (Glu-657, Asp-743 and Glu-747) and MrpB (Asp-121); these subunits are fused in some Gram-negative species. It is possible that the MrpA, MrpB and MrpD subunits, which contain essential transmembrane acidic residues, form the ion translocation site(s) of the Mrp antiporter complex.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025205-0
2009-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/7/2137.html?itemId=/content/journal/micro/10.1099/mic.0.025205-0&mimeType=html&fmt=ahah

References

  1. Abramson J., Smirnova I., Kasho V., Verner G., Kaback H. R., Iwata S. 2003; Structure and mechanism of the lactose permease of Escherichia coli . Science 301:610–615
    [Google Scholar]
  2. Bayer A. S., McNamara P., Yeaman M. R., Lucindo N., Jones T., Cheung A. L., Sahl H. G., Proctor R. A. 2006; Transposon disruption of the complex I NADH oxidoreductase gene ( snoD) in Staphylococcus aureus is associated with reduced susceptibility to the microbicidal activity of thrombin-induced platelet microbicidal protein 1. J Bacteriol 188:211–222
    [Google Scholar]
  3. Blanco-Rivero A., Leganes F., Fernandez-Valiente E., Calle P., Fernandez-Pinas F. 2005; mrpA, a gene with roles in resistance to Na+ and adaptation to alkaline pH in the cyanobacterium Anabaena sp. PCC7120. Microbiology 151:1671–1682
    [Google Scholar]
  4. Friedrich T., Scheide D. 2000; The respiratory complex I of bacteria, archaea and eukarya and its module common with membrane-bound multisubunit hydrogenases. FEBS Lett 479:1–5
    [Google Scholar]
  5. Hiramatsu T., Kodama K., Kuroda T., Mizushima T., Tsuchiya T. 1998; A putative multisubunit Na+/H+ antiporter from Staphylococcus aureus . J Bacteriol 180:6642–6648
    [Google Scholar]
  6. Hunte C., Screpanti E., Venturi M., Rimon A., Padan E., Michel H. 2005; Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202
    [Google Scholar]
  7. Inoue H., Noumi T., Tsuchiya T., Kanazawa H. 1995; Essential aspartic acid residues, Asp-133, Asp-163 and Asp-164, in the transmembrane helices of a Na+/H+ antiporter (NhaA) from Escherichia coli . FEBS Lett 363:264–268
    [Google Scholar]
  8. Ito M., Guffanti A. A., Krulwich T. A. 2001; Mrp-dependent Na+/H+ antiporters of Bacillus exhibit characteristics that are unanticipated for completely secondary active transporters. FEBS Lett 496:117–120
    [Google Scholar]
  9. Kajiyama Y., Otagiri M., Sekiguchi J., Kosono S., Kudo T. 2007; Complex formation by the mrpABCDEFG gene products, which constitute a principal Na+/H+ antiporter in Bacillus subtilis . J Bacteriol 189:7511–7514
    [Google Scholar]
  10. Kashyap D. R., Botero L. M., Lehr C., Hassett D. J., McDermott T. R. 2006; A Na+ : H+ antiporter and a molybdate transporter are essential for arsenite oxidation in Agrobacterium tumefaciens . J Bacteriol 188:1577–1584
    [Google Scholar]
  11. Kosono S., Morotomi S., Kitada M., Kudo T. 1999; Analyses of a Bacillus subtilis homologue of the Na+/H+ antiporter gene which is important for pH homeostasis of alkaliphilic Bacillus sp. C-125. Biochim Biophys Acta 1409171–175
    [Google Scholar]
  12. Kosono S., Ohashi Y., Kawamura F., Kitada M., Kudo T. 2000; Function of a principal Na+/H+ antiporter, ShaA, is required for initiation of sporulation in Bacillus subtilis . J Bacteriol 182:898–904
    [Google Scholar]
  13. Kosono S., Haga K., Tomizawa R., Kajiyama Y., Hatano K., Takeda S., Wakai Y., Hino M., Kudo T. 2005; Characterization of a multigene-encoded sodium/hydrogen antiporter (Sha) from Pseudomonas aeruginosa: its involvement in pathogenesis. J Bacteriol 187:5242–5248
    [Google Scholar]
  14. Kosono S., Kajiyama Y., Kawasaki S., Yoshinaka T., Haga K., Kudo T. 2006; Functional involvement of membrane-embedded and conserved acidic residues in the ShaA subunit of the multigene-encoded Na+/H+ antiporter in Bacillus subtilis . Biochim Biophys Acta 1758627–635
    [Google Scholar]
  15. Mathiesen C., Haegerhaell C. 2003; The ‘antiporter module’ of respiratory chain complex I includes the MrpC/NuoK subunit – a revision of the modular evolution scheme. FEBS Lett 549:7–13
    [Google Scholar]
  16. Meier T., Polzer P., Diederichs K., Welte W., Dimroth P. 2005; Structure of the rotor ring of F-Type Na+-ATPase from Ilyobacter tartaricus . Science 308:659–662
    [Google Scholar]
  17. Miller M. J., Oldenburg M., Fillingame R. H. 1990; The essential carboxyl group in subunit c of the F1F0 ATP synthase can be moved and H+-translocating function retained. Proc Natl Acad Sci U S A 87:4900–4904
    [Google Scholar]
  18. Morimoto T., Loh P. C., Hirai T., Asai K., Kobayashi K., Moriya S., Ogasawara N. 2002; Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis . Microbiology 148:3539–3552
    [Google Scholar]
  19. Morino M., Natsui S., Swartz T. H., Krulwich T. A., Ito M. 2008; Single gene deletions of mrpA to mrpG and mrpE point mutations affect activity of the Mrp Na+/H+ antiporter of alkaliphilic Bacillus and formation of hetero-oligomeric Mrp complexes. J Bacteriol 190:4162–4172
    [Google Scholar]
  20. Murata T., Yamato I., Kakinuma Y., Leslie A. G., Walker J. E. 2005; Structure of the rotor of the V-Type Na+-ATPase from Enterococcus hirae . Science 308:654–659
    [Google Scholar]
  21. Murtazina R., Booth B. J., Bullis B. L., Singh D. N., Fliegel L. 2001; Functional analysis of polar amino-acid residues in membrane associated regions of the NHE1 isoform of the mammalian Na+/H+ exchanger. Eur J Biochem 268:4674–4685
    [Google Scholar]
  22. Noumi T., Beltran C., Nelson H., Nelson N. 1991; Mutational analysis of yeast vacuolar H+-ATPase. Proc Natl Acad Sci U S A 88:1938–1942
    [Google Scholar]
  23. Nozaki K., Inaba K., Kuroda T., Tsuda M., Tsuchiya T. 1996; Cloning and sequencing of the gene for Na+/H+ antiporter of Vibrio parahaemolyticus . Biochem Biophys Res Commun 222:774–779
    [Google Scholar]
  24. Pornillos O., Chen Y. J., Chen A. P., Chang G. 2005; X-ray structure of the EmrE multidrug transporter in complex with a substrate. Science 310:1950–1953
    [Google Scholar]
  25. Putnoky P., Kereszt A., Nakamura T., Endre G., Grosskopf E., Kiss P., Kondorosi A. 1998; The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol Microbiol 28:1091–1101
    [Google Scholar]
  26. Saier M. H. Jr 2000; A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411
    [Google Scholar]
  27. Swartz T. H., Ikewada S., Ishikawa O., Ito M., Krulwich T. A. 2005a; The Mrp system: a giant among monovalent cation/proton antiporters?. Extremophiles 9:345–354
    [Google Scholar]
  28. Swartz T. H., Ito M., Hicks D. B., Nuqui M., Guffanti A. A., Krulwich T. A. 2005b; The Mrp Na+/H+ antiporter increases the activity of the malate : quinone oxidoreductase of an Escherichia coli respiratory mutant. J Bacteriol 187:388–391
    [Google Scholar]
  29. Takase K., Yamato I., Igarashi K., Kakinuma Y. 1999; Indispensable glutamic acid residue-139 of NtpK proteolipid in the reaction of vacuolar Na+-translocating ATPase in Enterococcus hirae . Biosci Biotechnol Biochem 63:1125–1129
    [Google Scholar]
  30. Thompson J. D., Gibson T. J., Plewniak F., Jeanmougin F., Higgins D. G. 1997; The clustal_x Windows interface: flexible strategies for multiple sequence alignment aided by quality analysis tools. Nucleic Acids Res 25:4876–4882
    [Google Scholar]
  31. Torres-Bacete J., Nakamaru-Ogiso E., Matsuno-Yagi A., Yagi T. 2007; Characterization of the NuoM (ND4) subunit in Escherichia coli NDH-1: conserved charged residues essential for energy-coupled activities. J Biol Chem 282:36914–36922
    [Google Scholar]
  32. Yamashita S., Yoshikawa H., Kawamura F., Takahashi H., Yamamoto T., Kobayashi Y., Saito H. 1986; The effect of spo0 mutations on the expression of spo0A- and spo0F-lacZ fusions. Mol Gen Genet 205:28–33
    [Google Scholar]
  33. Yamashita A., Singh S. K., Kawate T., Jin Y., Gouaux E. 2005; Crystal structure of a bacterial homologue of Na+/Cl-dependent neurotransmitter transporters. Nature 437:215–223
    [Google Scholar]
  34. Yoshinaka T., Takasu H., Tomizawa R., Kosono S., Kudo T. 2003; A s haE deletion mutant showed lower Na+ sensitivity compared to other deletion mutants in the Bacillus subtilis sodium/hydrogen antiporter (Sha) system. J Biosci Bioeng 95:306–309
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025205-0
Loading
/content/journal/micro/10.1099/mic.0.025205-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error