1887

Abstract

Several strains isolated from commercial probiotic preparations were identified at the species level, and their adhesion capabilities to three different model intestinal surfaces (mucin, Matrigel and Caco-2 cells) were assessed. In general, adhesion of spores was higher than that of vegetative cells to the three matrices, and overall strain displayed the best adhesion. Different biochemical treatments revealed that surface proteins of were involved in the adhesion properties of the strain. Surface-associated proteins from vegetative cells and spores of were extracted and identified, and some proteins such as S-layer components, flagellin and cell-bound proteases were found to bind to mucin or fibronectin. These facts suggest that those proteins might play important roles in the interaction of this probiotic strain within the human gastrointestinal tract.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.025288-0
2009-05-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/155/5/1708.html?itemId=/content/journal/micro/10.1099/mic.0.025288-0&mimeType=html&fmt=ahah

References

  1. Andersson A., Granum P. E., Ronner U. 1998; The adhesion of Bacillus cereus spores to epithelial cells might be an additional virulence mechanism. Int J Food Microbiol 39:93–99
    [Google Scholar]
  2. Araya M., Morelli L., Reid G., Sanders M. E., Stanton C. 2002 Guidelines for the evaluation of probiotics in foods FAO/WHO Report ();
    [Google Scholar]
  3. Cartman S. T., La Ragione R. M., Woodward M. J. 2008; Bacillus subtilis spores germinate in the chicken gastrointestinal tract. Appl Environ Microbiol 74:5254–5258
    [Google Scholar]
  4. Ciffo F. 1984; Determination of the spectrum of antibiotic resistance of the “ Bacillus subtilis ” strains of Enterogermina. Chemioterapia 3:45–52
    [Google Scholar]
  5. Du C., Chan W. C., McKeithan T. W., Nickerson K. W. 2005; Surface display of recombinant proteins on Bacillus thuringiensis spores. Appl Environ Microbiol 71:3337–3341
    [Google Scholar]
  6. Duc L. H., Hong H. A., Cutting S. M. 2003; Germination of the spore in the gastrointestinal tract provides a novel route for heterologous antigen presentation. Vaccine 21:4215–4224
    [Google Scholar]
  7. Duc L. H., Hong H. A., Barbosa T. M., Henriques A. O., Cutting S. M. 2004; Characterization of Bacillus probiotics available for human use. Appl Environ Microbiol 70:2161–2171
    [Google Scholar]
  8. Egelseer E., Schocher I., Sara M., Sleytr U. B. 1995; The S-layer from Bacillus stearothermophilus DSM 2358 functions as an adhesion site for a high-molecular-weight amylase. J Bacteriol 177:1444–1451
    [Google Scholar]
  9. Faille C., Jullien C., Fontaine F., Bellon-Fontaine M. N., Slomianny C., Benezech T. 2002; Adhesion of Bacillus spores and Escherichia coli cells to inert surfaces: role of surface hydrophobicity. Can J Microbiol 48:728–738
    [Google Scholar]
  10. Faille C., Tauveron G., Le Gentil-Lelievre C., Slomianny C. 2007; Occurrence of Bacillus cereus spores with a damaged exosporium: consequences on the spore adhesion on surfaces of food processing lines. J Food Prot 70:2346–2353
    [Google Scholar]
  11. Hachisuka Y., Kozuka S., Tsujikawa M. 1984; Exosporia and appendages of spores of Bacillus species. Microbiol Immunol 28:619–624
    [Google Scholar]
  12. Hong H. A., Duc L. H., Cutting S. M. 2005; The use of bacterial spore formers as probiotics. FEMS Microbiol Rev 29:813–835
    [Google Scholar]
  13. Hong H. A., Huang J. M., Khaneja R., Hiep L. V., Urdaci M. C., Cutting S. M. 2008; The safety of Bacillus subtilis and Bacillus indicus as food probiotics. J Appl Microbiol 105:510–520
    [Google Scholar]
  14. Husmark U., Ronner U. 1990; Forces involved in adhesion of Bacillus cereus spores to solid surfaces under different environmental conditions. J Appl Bacteriol 69:557–562
    [Google Scholar]
  15. Jacchieri S. G., Torquato R., Brentani R. R. 2003; Structural study of binding of flagellin by Toll-like receptor 5. J Bacteriol 185:4243–4247
    [Google Scholar]
  16. Kleinman H. K., McGarvey M. L., Hassell J. R., Star V. L., Cannon F. B., Laurie G. W., Martin G. R. 1986; Basement membrane complexes with biological activity. Biochemistry 25:312–318
    [Google Scholar]
  17. Kotiranta A., Lounatmaa K., Haapasalo M. 2000; Epidemiology and pathogenesis of Bacillus cereus infections. Microbes Infect 2:189–198
    [Google Scholar]
  18. Kramer J. M., Gilbert R. J. 1989; Bacillus cereus and other Bacillus species. In Foodborne Bacterial Pathogens pp 21–70 Edited by Doyle M. P. New York & Basel: Marcel Dekker;
    [Google Scholar]
  19. Kuwajima G., Asaka J., Fujiwara T., Fujiwara T., Node K., Kondo E. 1986; Nucleotide sequence of the hag gene encoding flagellin of Escherichia coli . J Bacteriol 168:1479–1483
    [Google Scholar]
  20. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  21. LaVallie E. R., Stahl M. L. 1989; Cloning of the flagellin gene from Bacillus subtilis and complementation studies of an in vitro-derived deletion mutation. J Bacteriol 171:3085–3094
    [Google Scholar]
  22. Mazza P. 1994; The use of Bacillus subtilis as an antidiarrhoeal microorganism. Boll Chim Farm 133:3–18
    [Google Scholar]
  23. Messner P., Allmaier G., Schaffer C., Wugeditsch T., Lortal S., Konig H., Niemetz R., Dorner M. 1997; Biochemistry of S-layers. FEMS Microbiol Rev 20:25–46
    [Google Scholar]
  24. Nuijten P. J., van Asten F. J., Gaastra W., van der Zeijst B. A. 1990; Structural and functional analysis of two Campylobacter jejuni flagellin genes. J Biol Chem 265:17798–17804
    [Google Scholar]
  25. Ouwehand A. C., Tuomola E. M., Lee Y. K., Salminen S. 2001; Microbial interactions to intestinal mucosal models. Methods Enzymol 337:200–212
    [Google Scholar]
  26. Pandey S., Agrawal D. K. 2006; Immunobiology of Toll-like receptors: emerging trends. Immunol Cell Biol 84:333–341
    [Google Scholar]
  27. Peng J. S., Tsai W. C., Chou C. C. 2001; Surface characteristics of Bacillus cereus and its adhesion to stainless steel. Int J Food Microbiol 65:105–111
    [Google Scholar]
  28. Ramarao N., Lereclus D. 2006; Adhesion and cytotoxicity of Bacillus cereus and Bacillus thuringiensis to epithelial cells are FlhA and PlcR dependent, respectively. Microbes Infect 8:1483–1491
    [Google Scholar]
  29. Rhee K. J., Sethupathi P., Driks A., Lanning D. K., Knight K. L. 2004; Role of commensal bacteria in development of gut-associated lymphoid tissues and preimmune antibody repertoire. J Immunol 172:1118–1124
    [Google Scholar]
  30. Ronner U., Husmark U., Henriksson A. 1990; Adhesion of Bacillus spores in relation to hydrophobicity. J Appl Bacteriol 69:550–556
    [Google Scholar]
  31. Sanchez B., Bressollier P., Urdaci M. C. 2008; Exported proteins in probiotic bacteria: adhesion to intestinal surfaces, host immunomodulation and molecular cross-talking with the host. FEMS Immunol Med Microbiol 54:1–17
    [Google Scholar]
  32. Schlee M., Wehkamp J., Altenhoefer A., Oelschlaeger T. A., Stange E. F., Fellermann K. 2007; Induction of human beta-defensin 2 by the probiotic Escherichia coli Nissle 1917 is mediated through flagellin. Infect Immun 75:2399–2407
    [Google Scholar]
  33. Sidhu M. S., Olsen I. 1997; S-layers of Bacillus species. Microbiology 143:1039–1052
    [Google Scholar]
  34. Sleytr U. B., Messner P., Pum D., Sara M. 1993; Crystalline bacterial cell surface layers. Mol Microbiol 10:911–916
    [Google Scholar]
  35. Sorokulova I. B., Pinchuk I. V., Denayrolles M., Osipova I. G., Huang J. M., Cutting S. M., Urdaci M. C. 2008; The safety of two Bacillus probiotic strains for human use. Dig Dis Sci 53:954–963
    [Google Scholar]
  36. Stabnikova E. V., Selezneva M. V., Ivanov V. N., Reva O. 1995; Theoretical and experimental screening of microbial component of biopreparation using for bioremediation of soil contaminated with oil. Appl Biochem Microbiol 31:534–540
    [Google Scholar]
  37. Tallon R., Arias S., Bressollier P., Urdaci M. C. 2007; Strain- and matrix-dependent adhesion of Lactobacillus plantarum is mediated by proteinaceous bacterial compounds. J Appl Microbiol 102:442–451
    [Google Scholar]
  38. Urdaci M. C., Bressollier P., Pinchuk I. 2004; Bacillus clausii probiotic strains: antimicrobial and immunomodulatory activities. J Clin Gastroenterol 38:S86–S90
    [Google Scholar]
  39. Velez M. P., De Keersmaecker S. C., Vanderleyden J. 2007; Adherence factors of Lactobacillus in the human gastrointestinal tract. FEMS Microbiol Lett 276:140–148
    [Google Scholar]
  40. Vinderola G., Matar C., Perdigon G. 2005; Role of intestinal epithelial cells in immune effects mediated by gram-positive probiotic bacteria: involvement of Toll-like receptors. Clin Diagn Lab Immunol 12:1075–1084
    [Google Scholar]
  41. Wijnands L. M., Dufrenne J. B., van Leusden F. M., Abee T. 2007; Germination of Bacillus cereus spores is induced by germinants from differentiated Caco-2 cells, a human cell line mimicking the epithelial cells of the small intestine. Appl Environ Microbiol 73:5052–5054
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.025288-0
Loading
/content/journal/micro/10.1099/mic.0.025288-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error