1887

Abstract

Bacterial generation of isethionate (2-hydroxyethanesulfonate) from taurine (2-aminoethanesulfonate) by anaerobic gut bacteria was established in 1980. That phenomenon in pure culture was recognized as a pathway of assimilation of taurine-nitrogen. Based on the latter work, we predicted from genome-sequence data that the marine gammaproteobacterium DSM 3043 would exhibit this trait. Quantitative conversion of taurine to isethionate, identified by mass spectrometry, was confirmed, and the taurine-nitrogen was recovered as cell material. An eight-gene cluster was predicted to encode the inducible vectorial, scalar and regulatory enzymes involved, some of which were known from other taurine pathways. The genes (Csal_0153–Csal_0156) encoding a putative ATP-binding-cassette (ABC) transporter for taurine (TauABBC) were shown to be inducibly transcribed by reverse transcription (RT-) PCR. An inducible taurine : 2-oxoglutarate aminotransferase [EC 2.6.1.55] was found (Csal_0158); the reaction yielded glutamate and sulfoacetaldehyde. The sulfoacetaldehyde was reduced to isethionate by NADPH-dependent sulfoacetaldehyde reductase (IsfD), a member of the short-chain alcohol dehydrogenase superfamily. The 27 kDa protein (SDS-PAGE) was identified by peptide-mass fingerprinting as the gene product of Csal_0161. The putative exporter of isethionate (IsfE) is encoded by Csal_0160; was inducibly transcribed (RT-PCR). The presumed transcriptional regulator, TauR (Csal_0157), may autoregulate its own expression, typical of GntR-type regulators. Similar gene clusters were found in several marine and terrestrial gammaproteobacteria, which, in the gut canal, could be the source of not only mammalian, but also arachnid and cephalopod isethionate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.036699-0
2010-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/5/1547.html?itemId=/content/journal/micro/10.1099/mic.0.036699-0&mimeType=html&fmt=ahah

References

  1. Allen J. A., Garrett M. R. 1971; Taurine in marine invertebrates. Adv Mar Biol 9:205–253
    [Google Scholar]
  2. Arahal D. R., Garcia M. T., Vargas C., Canovas D., Nieto J. J., Ventosa A. 2001; Chromohalobacter salexigens sp. nov., a moderately halophilic species that includes Halomonas elongata DSM 3043 and ATCC 33174. Int J Syst Evol Microbiol 51:1457–1462
    [Google Scholar]
  3. Baldock M. I., Denger K., Smits T. H. M., Cook A. M. 2007; Roseovarius sp. strain 217: aerobic taurine dissimilation via acetate kinase and acetate-CoA ligase. FEMS Microbiol Lett 271:202–206
    [Google Scholar]
  4. Barrow K. D., Karsten U., King R. J. 1993; Isethionic acid from the marine red alga Ceramium flaccidum. Phytochemistry 34:1429–1430
    [Google Scholar]
  5. Brüggemann C., Denger K., Cook A. M., Ruff J. 2004; Enzymes and genes of taurine and isethionate dissimilation in Paracoccus denitrificans. Microbiology 150:805–816
    [Google Scholar]
  6. Cook A. M., Denger K. 2002; Dissimilation of the C2 sulfonates. Arch Microbiol 179:1–6
    [Google Scholar]
  7. Cook A. M., Denger K. 2006; Metabolism of taurine in microorganisms: a primer in molecular diversity?. Adv Exp Med Biol 583:3–13
    [Google Scholar]
  8. Denger K., Ruff J., Rein U., Cook A. M. 2001; Sulfoacetaldehyde sulfo-lyase [EC 4.4.1.12] from Desulfonispora thiosulfatigenes: purification, properties and primary sequence. Biochem J 357:581–586
    [Google Scholar]
  9. Denger K., Ruff J., Schleheck D., Cook A. M. 2004; Rhodococcus opacus expresses the xsc gene to utilize taurine as a carbon source or as a nitrogen source but not as a sulfur source. Microbiology 150:1859–1867
    [Google Scholar]
  10. Denger K., Smits T. H. M., Cook A. M. 2006; Genome-enabled analysis of the utilization of taurine as sole source of carbon or nitrogen by Rhodobacter sphaeroides 2.4.1. Microbiology 152:3197–3206
    [Google Scholar]
  11. Eichhorn E., van der Ploeg J. R., Kertesz M. A., Leisinger T. 1997; Characterization of α-ketoglutarate-dependent taurine dioxygenase from Escherichia coli. J Biol Chem 272:23031–23036
    [Google Scholar]
  12. Eichhorn E., van der Ploeg J. R., Leisinger T. 2000; Deletion analysis of the Escherichia coli taurine and alkanesulfonate transport systems. J Bacteriol 182:2687–2695
    [Google Scholar]
  13. Fellman J. H., Roth E. S., Avedovech N. A., McCarthy K. D. 1980; The metabolism of taurine to isethionate. Arch Biochem Biophys 204:560–567
    [Google Scholar]
  14. Gorzynska A. K., Denger K., Cook A. M., Smits T. H. M. 2006; Inducible transcription of genes involved in taurine uptake and dissimilation by Silicibacter pomeroyi DSS-3T. Arch Microbiol 185:402–406
    [Google Scholar]
  15. Hellio C., Simon-Colin C., Clare A. S., Deslandes E. 2004; Isethionic acid and floridoside isolated from the red alga, Grateloupia turuturu, inhibit settlement of Balanus amphitrite cyprid larvae. Biofouling 20:139–145
    [Google Scholar]
  16. Holst P. B., Nielsen S. E., Anthoni U., Bisht K. S., Christophersen C., Gupta S., Parmar V. S., Nielsen P. H., Sahoo D. B., Singh A. 1994; Isethionate in certain red algae. J Appl Phycol 6:443–446
    [Google Scholar]
  17. Hoskin F. C. G., Noonan P. K. 1980; Taurine and isethionate in squid nerve. In Natural Sulfur Compounds: Novel Biochemical and Structural Aspects pp 253–263 Edited by Cavallini D., Gaull G. E., Zappia V. New York: Plenum Press;
    [Google Scholar]
  18. Huxtable R. J. 1992; Physiological actions of taurine. Physiol Rev 72:101–163
    [Google Scholar]
  19. Ito K., Miyazawa K., Matsumoto F. 1977; Amino acid composition of the ethanolic extractives from 31 species of marine red algae. Hiroshima Daigaku Suichikusangakubu Kiyo 16:77–90
    [Google Scholar]
  20. Jacobsen J. G., Collins L. L., Smith L. H. 1967; Urinary excretion of isethionic acid in man. Nature 214:1247–1248
    [Google Scholar]
  21. Junker F., Field J. A., Bangerter F., Ramsteiner K., Kohler H.-P., Joannou C. L., Mason J. R., Leisinger T., Cook A. M. 1994; Oxygenation and spontaneous deamination of 2-aminobenzenesulphonic acid in Alcaligenes sp. strain O-1 with subsequent meta ring cleavage and spontaneous desulphonation to 2-hydroxymuconic acid. Biochem J 300:429–436
    [Google Scholar]
  22. Kavanagh K. L., Jörnvall H., Persson B., Oppermann U. 2008; Medium- and short-chain dehydrogenase/reductase gene and protein families: the SDR superfamily: functional and structural diversity within a family of metabolic and regulatory enzymes. Cell Mol Life Sci 65:3895–3906
    [Google Scholar]
  23. Koechlin B. A. 1954; The isolation and identification of the major anion fraction of the axoplasm of squid giant nerve fibers. Proc Natl Acad Sci U S A 40:60–62
    [Google Scholar]
  24. Kondo H., Ishimoto M. 1987; Taurine dehydrogenase. Methods Enzymol 143:496–499
    [Google Scholar]
  25. Krejčík Z., Denger K., Weinitschke S., Hollemeyer K., Pačes V., Cook A. M., Smits T. H. M. 2008; Sulfoacetate released during the assimilation of taurine-nitrogen by Neptuniibacter caesariensis: purification of sulfoacetaldehyde dehydrogenase. Arch Microbiol 190:159–168
    [Google Scholar]
  26. Kumpulainen E., Pesonen I., Lähdesmäki P. 1982; Exchange of isethionate between blood and tissues in adult and 7-day-old mice. Acta Physiol Scand 114:419–423
    [Google Scholar]
  27. Laue H., Cook A. M. 2000; Biochemical and molecular characterization of taurine : pyruvate aminotransferase from the anaerobe Bilophila wadsworthia. Eur J Biochem 267:6841–6848
    [Google Scholar]
  28. le Maire M., Ghasi A., Moller J. V. 1996; Gel chromatography as an analytical tool for characterization of size and molecular mass of proteins. ACS Symp Ser 635:36–51
    [Google Scholar]
  29. Madigan M. T., Martinko J. M. 2006 Brock Biology of Microorganisms, 11th edn. Upper Saddle River, NJ, USA: Pearson;
  30. Mayer J., Cook A. M. 2009; Homotaurine metabolized to 3-sulfopropanoate in Cupriavidus necator H16: enzymes and genes in a patchwork pathway. J Bacteriol 191:6052–6058
    [Google Scholar]
  31. Rückert C., Koch D. J., Rey D. A., Albersmeier A., Mormann S., Pühler A., Kalinowski J. 2005; Functional genomics and expression analysis of the Corynebacterium glutamicum fpr2-cysIXHDNYZ gene cluster involved in assimilatory sulphate reduction. BMC Genomics 6:121
    [Google Scholar]
  32. Ruff J., Denger K., Cook A. M. 2003; Sulphoacetaldehyde acetyltransferase yields acetyl phosphate: purification from Alcaligenes defragrans and gene clusters in taurine degradation. Biochem J 369:275–285
    [Google Scholar]
  33. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  34. Shibuya I., Yagi T., Benson A. A. Japanese Society of Plant Physiologists 1963; Sulfonic acids in algae. In Studies on Microalgae and Photosynthetic Bacteria pp 627–636 Edited by Tokyo: University of Tokyo Press;
    [Google Scholar]
  35. Shimamoto G., Berk R. S. 1979; Catabolism of taurine in Pseudomonas aeruginosa. Biochim Biophys Acta 569:287–292
    [Google Scholar]
  36. Styp von Rekowski K., Denger K., Cook A. M. 2005; Isethionate as a product from taurine during nitrogen-limited growth of Klebsiella oxytoca Tau-N1. Arch Microbiol 183:325–330
    [Google Scholar]
  37. Townley M. A., Tillinghast E. K., Neefus C. D. 2006; Changes in composition of spider orb web sticky droplets with starvation and web removal, and synthesis of sticky droplet compounds. J Exp Biol 209:1463–1486
    [Google Scholar]
  38. Weinitschke S., Styp von Rekowski K., Denger K., Cook A. M. 2005; Sulfoacetaldehyde is excreted quantitatively by Acinetobacter calcoaceticus SW1 during growth with taurine as sole source of nitrogen. Microbiology 151:1285–1290
    [Google Scholar]
  39. Weinitschke S., Denger K., Cook A. M., Smits T. H. M. 2007; The DUF81 protein TauE in Cupriavidus necator H16, a sulfite exporter in the metabolism of C2-sulfonates. Microbiology 153:3055–3060
    [Google Scholar]
  40. Weinitschke S., Sharma P. I., Stingl U., Cook A. M., Smits T. H. M. 2010; Gene clusters involved in isethionate degradation in terrestrial and marine bacteria. Appl Environ Microbiol 76:618–621
    [Google Scholar]
  41. Weisburg W. G., Barns S. M., Pelletier D. A., Lane D. J. 1991; 16S ribosomal DNA amplification for phylogenetic study. J Bacteriol 173:697–703
    [Google Scholar]
  42. Wiethaus J., Schubert B., Pfander Y., Narberhaus F., Masepohl B. 2008; The GntR-like regulator TauR activates expression of taurine utilization genes in Rhodobacter capsulatus. J Bacteriol 190:487–493
    [Google Scholar]
  43. Williamson J. E., De Nys R., Kumar N., Carson D. G., Steinberg P. D. 2000; Induction of metamorphosis in the sea urchin Holopneustes purpurascens by a metabolite complex from the algal host Delisea pulchra. Biol Bull 198:332–345
    [Google Scholar]
  44. Yancey P. H., Blake W. R., Conley J. 2002; Unusual organic osmolytes in deep-sea animals: adaptations to hydrostatic pressure and other perturbants. Comp Biochem Physiol A Mol Integr Physiol 133:667–676
    [Google Scholar]
  45. Yonaha K., Toyama S., Soda K. 1985; Taurine-glutamate transaminase. Methods Enzymol 113:102–108
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.036699-0
Loading
/content/journal/micro/10.1099/mic.0.036699-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error