1887

Abstract

Two regulatory genes, and , have been previously identified upstream of the polyketide gene cluster involved in biosynthesis of the angucycline-like antibiotic auricin in CCM 3239. The gene encodes a protein similar to the response regulators of bacterial two-component signal transduction systems and has been shown to specifically activate expression of the auricin biosynthetic genes. The gene encodes a protein homologous to transcriptional repressors of the TetR family. Here we describe the characterization of the gene. Expression of the gene is directed by a single promoter, , which is induced just before stationary phase. Disruption of in CCM 3239 had no effect on growth and differentiation. However, the disrupted strain produced more auricin than its parental wild-type CCM 3239 strain. Transcription from the and promoters, directing expression of the first biosynthetic gene in the auricin gene cluster and the pathway-specific transcriptional activator, respectively, was increased in the CCM 3239 mutant strain. However, Aur1R was shown to bind specifically only to the promoter . This binding was abolished by the addition of auricin and/or its intermediates. The results indicate that the Aur1R regulator specifically represses expression of the gene, which encodes a pathway-specific activator of the auricin biosynthetic gene cluster in CCM 3239, and that this repression is relieved by auricin or its intermediates.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.037895-0
2010-08-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/8/2374.html?itemId=/content/journal/micro/10.1099/mic.0.037895-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Seidman J. G., Smith J. A., Struhl K. 1995 Current Protocols in Molecular Biology. New York: Wiley;
  2. Bibb M. J. 2005; Regulation of secondary metabolism in streptomycetes. Curr Opin Microbiol 8:208–215
    [Google Scholar]
  3. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  4. Brown K. L., Wood S., Buttner M. J. 1992; Isolation and characterization of the major vegetative RNA polymerase of Streptomyces coelicolor A3(2); renaturation of a sigma subunit using GroEL. Mol Microbiol 6:1133–1139
    [Google Scholar]
  5. Bunet R., Mendes M. V., Rouhier N., Pang X., Hotel L., Leblond P., Aigle B. 2008; Regulation of the synthesis of the angucyclinone antibiotic alpmycin in Streptomyces ambofaciens by the autoregulator receptor AlpZ and its specific ligand. J Bacteriol 190:3293–3305
    [Google Scholar]
  6. Evans G. A., Lewis K., Rothenberg B. E. 1989; High efficiency vectors for cosmid microcloning and genomic analysis. Gene 79:9–20
    [Google Scholar]
  7. Folcher M., Gaillard H., Nguyen L. T., Nguyen K. T., Lacroix P., Bamas-Jacques N., Rinkel M., Thompson C. J. 2001; Pleiotropic functions of a Streptomyces pristinaespiralis autoregulator receptor in development, antibiotic biosynthesis, and expression of a superoxide dismutase. J Biol Chem 276:44297–44306
    [Google Scholar]
  8. Gust B., Challis G. L., Fowler K., Kieser T., Chater K. F. 2003; PCR-targeted Streptomyces gene replacement identifies a protein domain needed for biosynthesis of the sesquiterpene soil odor geosmin. Proc Natl Acad Sci U S A 100:1541–1548
    [Google Scholar]
  9. Horinouchi S., Hara O., Beppu T. 1983; Cloning of a pleiotropic gene that positively controls biosynthesis of A-factor, actinorhodin, and prodigiosin in Streptomyces coelicolor A3(2) and Streptomyces lividans. J Bacteriol 155:1238–1248
    [Google Scholar]
  10. Jiang H., Hutchinson C. R. 2006; Feedback regulation of doxorubicin biosynthesis in Streptomyces peucetius. Res Microbiol 157:666–674
    [Google Scholar]
  11. Kieser T., Bibb M. J., Buttner M. J., Chater K. F., Hopwood D. A. 2000 Practical Streptomyces Genetics. Norwich, UK: The John Innes Foundation;
  12. Kormanec J. 2001; Analyzing the developmental expression of sigma factors with S1-nuclease mapping.. In Nuclease Methods and Protocols. Methods in Molecular Biology vol. 160 pp 481–494 Edited by Chein C. H. Totowa, NJ: Humana Press;
    [Google Scholar]
  13. Kormanec J., Farkasovsky M. 1993; Differential expression of principal sigma factor homologues of Streptomyces aureofaciens correlates with developmental stage. Nucleic Acids Res 21:3647–3652
    [Google Scholar]
  14. Kormanec J., Rezuchova B., Farkasovsky M. 1993; Optimization of Streptomyces aureofaciens transformation and disruption of the hrdA gene encoding a homologue of the principal σ factor. J Gen Microbiol 139:2525–2529
    [Google Scholar]
  15. Laemmli U. K. 1970; Cleavage of structural proteins during assembly of the head of bacteriophage T4. Nature 227:680–685
    [Google Scholar]
  16. Le T. B., Fiedler H.-P., den Hengst C. D., Ahn S. K., Maxwell A., Buttner M. J. 2009; Coupling of the biosynthesis and export of the DNA gyrase inhibitor simocyclinone in Streptomyces antibioticus. Mol Microbiol 72:1462–1474
    [Google Scholar]
  17. Lombo F., Brana A. F., Salas J. A., Mendez C. 2004; Genetic organization of the biosynthetic gene cluster for the antitumor angucycline oviedomycin in Streptomyces antibioticus ATCC 11891. ChemBioChem 5:1181–1187
    [Google Scholar]
  18. Matsuno K., Yamada Y., Lee C.-K., Nihira T. 2004; Identification by gene deletion analysis of barB as a negative regulator controlling an early process of virginiamycin biosynthesis in Streptomyces virginiae. Arch Microbiol 181:52–59
    [Google Scholar]
  19. Maxam A. M., Gilbert W. 1980; Sequencing end-labeled DNA with base specific chemical cleavages. Methods Enzymol 65:499–560
    [Google Scholar]
  20. Metsa-Ketela M., Ylihonko K., Mantsala P. 2004; Partial activation of a silent angucycline-type gene cluster from a rubromycin b producing Streptomyces sp. PGA64. J Antibiot 57:502–510
    [Google Scholar]
  21. Nishida H., Ohnishi Y., Beppu T., Horinouchi S. 2007; Evolution of γ-butyrolactone synthases and receptors in Streptomyces. Environ Microbiol 9:1986–1994
    [Google Scholar]
  22. Novakova R., Bistakova J., Homerova D., Rezuchova B., Kormanec J. 2002; Cloning and characterization of a polyketide synthase gene cluster involved in biosynthesis of a proposed angucycline-like polyketide auricin in Streptomyces aureofaciens CCM 3239. Gene 297:197–208
    [Google Scholar]
  23. Novakova R., Homerova D., Feckova L., Kormanec J. 2005; Characterization of a regulatory gene essential for the production of the angucycline-like polyketide antibiotic auricin in Streptomyces aureofaciens CCM 3239. Microbiology 151:2693–2706
    [Google Scholar]
  24. Onaka H., Horinouchi S. 1997; DNA-binding activity of the A-factor receptor protein and its recognition DNA sequence. Mol Microbiol 24:991–1000
    [Google Scholar]
  25. Ostash I., Ostash B., Luzhetskyy A., Bechthold A., Walker S., Fedorenko V. 2008; Coordination of export and glycosylation of landomycins in Streptomyces cyanogenus S136. FEMS Microbiol Lett 285:195–202
    [Google Scholar]
  26. Pang X., Aigle B., Girardet J.-M., Mangenot S., Pernodet J.-L., Decaris B., Leblond P. 2004; Functional angucycline-like antibiotic gene cluster in the terminal inverted repeats of the Streptomyces ambofaciens linear chromosome. Antimicrob Agents Chemother 48:575–588
    [Google Scholar]
  27. Ramos J. L., Martinez-Bueno M., Molina-Henares A. J., Teran W., Watanabe K., Zhang X., Galledos M. T., Brennan R., Tobes R. 2005; The TetR family of transcriptional repressors. Microbiol Mol Biol Rev 69:326–356
    [Google Scholar]
  28. Redenbach M., Kieser H. M., Denapaite D., Eichner A., Cullum J., Kinashi H., Hopwood D. A. 1996; A set of ordered cosmids and a detailed genetic and physical map for the 8 Mb Streptomyces coelicolor A3(2) chromosome. Mol Microbiol 21:77–96
    [Google Scholar]
  29. Schumacher M. A., Miller M. C., Grkovic S., Brown M. H., Skurray R., Brennan R. G. 2002; Structural basis for cooperative DNA binding by two dimers of the multidrug-binding protein QacR. EMBO J 21:1210–1218
    [Google Scholar]
  30. Smokvina T., Mazodier P., Boccard F., Thompson C. J., Guerineau M. 1990; Construction of a series of pSAM2-based integrative vectors for use in actinomycetes. Gene 94:53–59
    [Google Scholar]
  31. Stratigopoulos G., Cundliffe E. 2002; Expression analysis of the tylosin-biosynthetic gene cluster: pivotal regulatory role of the tylQ product. Chem Biol 9:71–78
    [Google Scholar]
  32. Stratigopoulos G., Gandecha A. R., Cundliffe E. 2002; Regulation of tylosin production and morphological differentiation in Streptomyces fradiae by TylP, a deduced γ-butyrolactone receptor. Mol Microbiol 45:735–744
    [Google Scholar]
  33. Tahlan K., Ahn S. K., Sing A., Bodnaruk T. D., Willems A. R., Davidson A. R., Nodwell J. R. 2007; Initiation of actinorhodin export in Streptomyces coelicolor. Mol Microbiol 63:951–961
    [Google Scholar]
  34. Wang L., Tian X., Wang J., Yang H., Fan K., Xu G., Yang K., Tan H. 2009; Autoregulation of antibiotic biosynthesis by binding of the end product to an atypical response regulator. Proc Natl Acad Sci U S A 106:8617–8622
    [Google Scholar]
  35. Yang K., Han L., Vining L. C. 1995; Regulation of jadomycin B production in Streptomyces venezuelae ISP5230: involvement of a repressor gene, jadR2. J Bacteriol 177:6111–6117
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.037895-0
Loading
/content/journal/micro/10.1099/mic.0.037895-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error