1887

Abstract

Bistable populations of bacteria give rise to two or more subtypes that exhibit different phenotypes. We have explored whether the periodontal pathogen exhibits bistable invasive phenotypes. Using a modified cell invasion assay, we show for the first time that there are two distinct subtypes within a population of strains NCTC 11834 and W50 that display differences in their ability to invade oral epithelial cells. The highly invasive subtype invades cells at 10–30-fold higher levels than the poorly invasive subtype and remains highly invasive for approximately 12–16 generations. Analysis of the gingipain activity of these subtypes revealed that the highly invasive type had reduced cell-associated arginine-specific protease activity. The role of Arg-gingipain activity in invasion was verified by enhancement of invasion by mutations and by inclusion of an Arg-gingipain inhibitor in invasion assays using wild-type bacteria. In addition, a population of Δ bacteria did not contain a hyperinvasive subtype. Screening of the protease activity of wild-type populations of both strains identified high and low protease subtypes which also showed a corresponding reduction or enhancement, respectively, of invasive capabilities. Microarray analysis of these bistable populations revealed a putative signature set of genes that includes oxidative stress resistance and iron transport genes, and which might be critical to invasion of or survival within epithelial cells.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038075-0
2010-10-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/10/3052.html?itemId=/content/journal/micro/10.1099/mic.0.038075-0&mimeType=html&fmt=ahah

References

  1. Boisvert H., Duncan M. J. 2008; Clathrin-dependent entry of a gingipain adhesin peptide and Porphyromonas gingivalis into host cells. Cell Microbiol 10:2538–2552
    [Google Scholar]
  2. Chai Y., Chu F., Kolter R., Losick R. 2008; Bistability and biofilm formation in Bacillus subtilis. Mol Microbiol 67:254–263
    [Google Scholar]
  3. Chen T., Duncan M. J. 2004; Gingipain adhesin domains mediate Porphyromonas gingivalis adherence to epithelial cells. Microb Pathog 36:205–209
    [Google Scholar]
  4. Chen T., Nakayama K., Belliveau L., Duncan M. J. 2001; Porphyromonas gingivalis gingipains and adhesion to epithelial cells. Infect Immun 69:3048–3056
    [Google Scholar]
  5. Chen W., Honma K., Sharma A., Kuramitsu H. K. 2006; A universal stress protein of Porphyromonas gingivalis is involved in stress responses and biofilm formation. FEMS Microbiol Lett 264:15–21
    [Google Scholar]
  6. Curtis M. A., Aduse-Opoku J., Rangarajan M. 2001; Cysteine proteases of Porphyromonas gingivalis. Crit Rev Oral Biol Med 12:192–216
    [Google Scholar]
  7. Darveau R. P., Pham T. T., Lemley K., Reife R. A., Bainbridge B. W., Coats S. R., Howald W. N., Way S. S., Hajjar A. M. 2004; Porphyromonas gingivalis lipopolysaccharide contains multiple lipid A species that functionally interact with both Toll-like receptors 2 and 4. Infect Immun 72:5041–5051
    [Google Scholar]
  8. Dashper S. G., Butler C. A., Lissel J. P., Paolini R. A., Hoffmann B., Veith P. D., O'Brien-Simpson N. M., Snelgrove S. L., Tsiros J. T., Reynolds E. C. 2005; A novel Porphyromonas gingivalis FeoB plays a role in manganese accumulation. J Biol Chem 280:28095–28102
    [Google Scholar]
  9. Dashper S. G., Ang C. S., Veith P. D., Mitchell H. L., Lo A. W., Seers C. A., Walsh K. A., Slakeski N., Chen D. other authors 2009; Response of Porphyromonas gingivalis to heme limitation in continuous culture. J Bacteriol 191:1044–1055
    [Google Scholar]
  10. Diaz P. I., Rogers A. H. 2004; The effect of oxygen on the growth and physiology of Porphyromonas gingivalis. Oral Microbiol Immunol 19:88–94
    [Google Scholar]
  11. Diaz P. I., Slakeski N., Reynolds E. C., Morona R., Rogers A. H., Kolenbrander P. E. 2006; Role of oxyR in the oral anaerobe Porphyromonas gingivalis. J Bacteriol 188:2454–2462
    [Google Scholar]
  12. Dorn B. R., Burks J. N., Seifert K. N., Progulske-Fox A. 2000; Invasion of endothelial and epithelial cells by strains of Porphyromonas gingivalis. FEMS Microbiol Lett 187:139–144
    [Google Scholar]
  13. Duncan M. J., Nakao S., Skobe Z., Xie H. 1993; Interactions of Porphyromonas gingivalis with epithelial cells. Infect Immun 61:2260–2265
    [Google Scholar]
  14. Eick S., Reissmann A., Rodel J., Schmidt K. H., Pfister W. 2006; Porphyromonas gingivalis survives within KB cells and modulates inflammatory response. Oral Microbiol Immunol 21:231–237
    [Google Scholar]
  15. Ernst F. D., Homuth G., Stoof J., Mader U., Waidner B., Kuipers E. J., Kist M., Kusters J. G., Bereswill S., van Vliet A. H. 2005; Iron-responsive regulation of the Helicobacter pylori iron-cofactored superoxide dismutase SodB is mediated by Fur. J Bacteriol 187:3687–3692
    [Google Scholar]
  16. Fee J. A. 1991; Regulation of sod genes in Escherichia coli: relevance to superoxide dismutase function. Mol Microbiol 5:2599–2610
    [Google Scholar]
  17. Fitzpatrick R. E., Wijeyewickrema L. C., Pike R. N. 2009; The gingipains: scissors and glue of the periodontal pathogen, Porphyromonas gingivalis. Future Microbiol 4:471–487
    [Google Scholar]
  18. Genco C. A., Potempa J., Mikolajczyk-Pawlinska J., Travis J. 1999; Role of gingipains R in the pathogenesis of Porphyromonas gingivalis-mediated periodontal disease. Clin Infect Dis 28:456–465
    [Google Scholar]
  19. Gillespie J., Holt S. C. 1987; Growth studies of Wolinella recta, a Gram-negative periodontopathogen. Oral Microbiol Immunol 2:105–111
    [Google Scholar]
  20. Hamada N., Watanabe K., Sasakawa C., Yoshikawa M., Yoshimura F., Umemoto T. 1994; Construction and characterization of a fimA mutant of Porphyromonas gingivalis. Infect Immun 62:1696–1704
    [Google Scholar]
  21. Houalet-Jeanne S., Pellen-Mussi P., Tricot-Doleux S., Apiou J., Bonnaure-Mallet M. 2001; Assessment of internalization and viability of Porphyromonas gingivalis in KB epithelial cells by confocal microscopy. Infect Immun 69:7146–7151
    [Google Scholar]
  22. Ishiguro I., Saiki K., Konishi K. 2009; PG27 is a novel membrane protein essential for a Porphyromonas gingivalis protease secretion system. FEMS Microbiol Lett 292:261–267
    [Google Scholar]
  23. Johnson N. A., Liu Y., Fletcher H. M. 2004; Alkyl hydroperoxide peroxidase subunit C ( ahpC) protects against organic peroxides but does not affect the virulence of Porphyromonas gingivalis W83. Oral Microbiol Immunol 19:233–239
    [Google Scholar]
  24. Kadowaki T., Nakayama K., Yoshimura F., Okamoto K., Abe N., Yamamoto K. 1998; Arg-gingipain acts as a major processing enzyme for various cell surface proteins in Porphyromonas gingivalis. J Biol Chem 273:29072–29076
    [Google Scholar]
  25. Kadowaki T., Takii R., Yamatake K., Kawakubo T., Tsukuba T., Yamamoto K. 2007; A role for gingipains in cellular responses and bacterial survival in Porphyromonas gingivalis-infected cells. Front Biosci 12:4800–4809
    [Google Scholar]
  26. Lamont R. J., Oda D., Persson R. E., Persson G. R. 1992; Interaction of Porphyromonas gingivalis with gingival epithelial cells maintained in culture. Oral Microbiol Immunol 7:364–367
    [Google Scholar]
  27. Lamont R. J., Chan A., Belton C. M., Izutsu K. T., Vasel D., Weinberg A. 1995; Porphyromonas gingivalis invasion of gingival epithelial cells. Infect Immun 63:3878–3885
    [Google Scholar]
  28. Madianos P. N., Papapanou P. N., Nannmark U., Dahlen G., Sandros J. 1996; Porphyromonas gingivalis FDC381 multiplies and persists within human oral epithelial cells in vitro. Infect Immun 64:660–664
    [Google Scholar]
  29. Maeda H., Reibel J., Holmstrup P. 1994; Keratin staining pattern in clinically normal and diseased oral mucosa of lichen planus patients. Scand J Dent Res 102:210–215
    [Google Scholar]
  30. Nakayama K., Kadowaki T., Okamoto K., Yamamoto K. 1995; Construction and characterization of arginine-specific cysteine proteinase (Arg-gingipain)-deficient mutants of Porphyromonas gingivalis. Evidence for significant contribution of Arg-gingipain to virulence. J Biol Chem 270:23619–23626
    [Google Scholar]
  31. Nakayama K., Yoshimura F., Kadowaki T., Yamamoto K. 1996a; Involvement of arginine-specific cysteine proteinase (Arg-gingipain) in fimbriation of Porphyromonas gingivalis. J Bacteriol 178:2818–2824
    [Google Scholar]
  32. Nakayama K., Yoshimura F., Kadowaki T., Yamamoto K. 1996b; Involvement of arginine-specific cysteine proteinase (Arg-gingipain) in fimbriation of Porphyromonas gingivalis. J Bacteriol 178:2818–2824
    [Google Scholar]
  33. Park Y., Yilmaz O., Jung I. Y., Lamont R. J. 2004; Identification of Porphyromonas gingivalis genes specifically expressed in human gingival epithelial cells by using differential display reverse transcription-PCR. Infect Immun 72:3752–3758
    [Google Scholar]
  34. Pike R. N., Potempa J., McGraw W., Coetzer T. H., Travis J. 1996; Characterization of the binding activities of proteinase-adhesin complexes from Porphyromonas gingivalis. J Bacteriol 178:2876–2882
    [Google Scholar]
  35. Potempa J., Pike R., Travis J. 1997; Titration and mapping of the active site of cysteine proteinases from Porphyromonas gingivalis (gingipains) using peptidyl chloromethanes. Biol Chem 378:223–230
    [Google Scholar]
  36. Rangarajan M., Hashim A., Aduse-Opoku J., Paramonov N., Hounsell E. F., Curtis M. A. 2005; Expression of Arg-gingipain RgpB is required for correct glycosylation and stability of monomeric Arg-gingipain RgpA from Porphyromonas gingivalis W50. Infect Immun 73:4864–4878
    [Google Scholar]
  37. Rauch E. M., Bar-Yam Y. 2004; Theory predicts the uneven distribution of genetic diversity within species. Nature 431:449–452
    [Google Scholar]
  38. Rudney J. D., Chen R., Sedgewick G. J. 2001; Intracellular Actinobacillus actinomycetemcomitans and Porphyromonas gingivalis in buccal epithelial cells collected from human subjects. Infect Immun 69:2700–2707
    [Google Scholar]
  39. Rudney J. D., Chen R., Sedgewick G. J. 2005; Actinobacillus actinomycetemcomitans, Porphyromonas gingivalis, and Tannerella forsythensis are components of a polymicrobial intracellular flora within human buccal cells. J Dent Res 84:59–63
    [Google Scholar]
  40. Sato K., Naito M., Yukitake H., Hirakawa H., Shoji M., McBride M. J., Rhodes R. G., Nakayama K. 2010; A protein secretion system linked to bacteroidete gliding motility and pathogenesis. Proc Natl Acad Sci U S A 107:276–281
    [Google Scholar]
  41. Simpson W., Olczak T., Genco C. A. 2000; Characterization and expression of HmuR, a TonB-dependent hemoglobin receptor of Porphyromonas gingivalis. J Bacteriol 182:5737–5748
    [Google Scholar]
  42. Smits W. K., Kuipers O. P., Veening J. W. 2006; Phenotypic variation in bacteria: the role of feedback regulation. Nat Rev Microbiol 4:259–271
    [Google Scholar]
  43. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L. Jr 1998; Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144
    [Google Scholar]
  44. Sojar H. T., Hamada N., Genco R. J. 1997; Isolation and characterization of fimbriae from a sparsely fimbriated strain of Porphyromonas gingivalis. Appl Environ Microbiol 63:2318–2323
    [Google Scholar]
  45. Thompson D. K., Beliaev A. S., Giometti C. S., Tollaksen S. L., Khare T., Lies D. P., Nealson K. H., Lim H., Yates J. III other authors 2002; Transcriptional and proteomic analysis of a ferric uptake regulator (Fur) mutant of Shewanella oneidensis: possible involvement of Fur in energy metabolism, transcriptional regulation, and oxidative stress. Appl Environ Microbiol 68:881–892
    [Google Scholar]
  46. Tsuda K., Furuta N., Inaba H., Kawai S., Hanada K., Yoshimori T., Amano A. 2008; Functional analysis of α5 β1 integrin and lipid rafts in invasion of epithelial cells by Porphyromonas gingivalis using fluorescent beads coated with bacterial membrane vesicles. Cell Struct Funct 33:123–132
    [Google Scholar]
  47. Ueshima J., Shoji M., Ratnayake D. B., Abe K., Yoshida S., Yamamoto K., Nakayama K. 2003; Purification, gene cloning, gene expression, and mutants of Dps from the obligate anaerobe Porphyromonas gingivalis. Infect Immun 71:1170–1178
    [Google Scholar]
  48. Veening J. W., Igoshin O. A., Eijlander R. T., Nijland R., Hamoen L. W., Kuipers O. P. 2008; Transient heterogeneity in extracellular protease production by Bacillus subtilis. Mol Syst Biol 4:184
    [Google Scholar]
  49. Yilmaz O. 2008; The chronicles of Porphyromonas gingivalis: the microbium, the human oral epithelium and their interplay. Microbiology 154:2897–2903
    [Google Scholar]
  50. Yilmaz O., Watanabe K., Lamont R. J. 2002; Involvement of integrins in fimbriae-mediated binding and invasion by Porphyromonas gingivalis. Cell Microbiol 4:305–314
    [Google Scholar]
  51. Yoshimura F., Murakami Y., Nishikawa K., Hasegawa Y., Kawaminami S. 2009; Surface components of Porphyromonas gingivalis. J Periodontal Res 44:1–12
    [Google Scholar]
  52. Zhang Y., Wang T., Chen W., Yilmaz O., Park Y., Jung I.-Y., Hackett M., Lamont R. J. 2005; Differential protein expression by Porphyromonas gingivalis in response to secreted epithelial cell components. Proteomics 5:198–211
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038075-0
Loading
/content/journal/micro/10.1099/mic.0.038075-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF

Supplementary material 3

PDF

Supplementary material 4

PDF

Supplementary material 5

PDF

Supplementary material 6

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error