1887

Abstract

H16 is probably the best-studied ‘Knallgas’ bacterium and producer of poly(3-hydroxybutyrate) (PHB). Genome-wide transcriptome analyses were employed to detect genes that are differentially transcribed during PHB biosynthesis. For this purpose, four transcriptomes from different growth phases of the wild-type H16 and of the two PHB-negative mutants PHB4 and Δ were compared: (i) cells from the exponential growth phase with cells that were in transition to stationary growth phase, and (ii) cells from the transition phase with cells from the stationary growth phase of H16, as well as (iii) cells from the transition phase of H16 with those from the transition phase of PHB4 and (iv) cells from the transition phase of Δ with those from the transition phase of PHB4. Among a large number of genes exhibiting significant changes in transcription level, several genes within the functional class of lipid metabolism were detected. In strain H16, , , , and H16_A3307 exhibited a decreased transcription level in the stationary growth phase compared with the transition phase, whereas , H16_A3311, and were found to be induced in the stationary growth phase. Compared with PHB4, we found that , , H16_A3307, , and were induced in the wild-type, and , , and exhibited an elevated transcription level in PHB4. In strain Δ, and were highly induced compared with PHB4. Additionally, the results of this study suggest that mutant strain PHB4 is defective in PHB biosynthesis and fatty acid metabolism. A significant downregulation of the two operons in mutant strain PHB4 was observed. The putative polyhydroxyalkanoate (PHA) synthase identified in strain H16 was further investigated by several functional analyses. Mutant PHB4 could be phenotypically complemented by expression of from a plasmid; on the other hand, in the mutant H16Δ, no PHA production was observed. PhaC2 activity could not be detected in any experiment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.038380-0
2010-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/156/7/2136.html?itemId=/content/journal/micro/10.1099/mic.0.038380-0&mimeType=html&fmt=ahah

References

  1. Abe T., Kobayashi T., Saito T. 2005; Properties of a novel intracellular poly(3-hydroxybutyrate) depolymerase with high specific activity (PhaZd) in Wautersia eutropha H16. J Bacteriol 187:6982–6990
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  3. Benes V., Muckenthaler M. 2003; Standardization of protocols in cDNA microarray analysis. Trends Biochem Sci 28:244–249
    [Google Scholar]
  4. Bork P. 1993; Identification of a ring protein that can interact in vivo with the BRCA1 gene product. Proteins 17:363–374
    [Google Scholar]
  5. Bowien B., Kusian B. 2002; Genetics and control of CO2 assimilation in the chemoautotroph Ralstonia eutropha. Arch Microbiol 178:85–93
    [Google Scholar]
  6. Brandl H., Gross R. A., Lenz R. W., Fuller R. C. 1988; Pseudomonas oleovorans as a source of poly( β-hydroxyalkanoates) for potential applications as biodegradable polyesters. Appl Environ Microbiol 54:1977–1982
    [Google Scholar]
  7. Chain P. S. G., Denef V. J., Konstantinidis K. T., Vergez L. M., Agullo L., Reyes V. L., Hauser L., Cordova M., Gomez L. other authors 2006; Burkholderia xenovorans LB400 harbors a multi-replicon, 9.73-Mbp genome shaped for versatility. Proc Natl Acad Sci U S A 103:15280–15287
    [Google Scholar]
  8. Don R. H., Pemberton J. M. 1981; Properties of six pesticide degradation plasmids isolated from Alcaligenes paradoxus and Alcaligenes eutrophus. J Bacteriol 145:681–686
    [Google Scholar]
  9. Ehrenreich A. 2006; DNA microarray technology for the microbiologist: an overview. Appl Microbiol Biotechnol 73:255–273
    [Google Scholar]
  10. Fitzpatrick J. M., Johnston D. A., Williams G. W., Williams D. J., Freeman T. C., Dunnea D. W., Hoffmann K. F. 2005; An oligonucleotide microarray for transcriptome analysis of Schistosoma mansoni and its application/use to investigate gender-associated gene expression. Mol Biochem Parasitol 141:1–13
    [Google Scholar]
  11. Friedrich C. G., Friedrich B., Bowien B. 1981; Formation of enzymes of autotrophic metabolism during heterotrophic growth of Alcaligenes eutrophus. J Gen Microbiol 122:69–78
    [Google Scholar]
  12. Fukui T., Shiomi N., Doi Y. 1998; Expression and characterization of ( R)-specific enoyl coenzyme A hydratase involved in polyhydroxyalkanoate biosynthesis by Aeromonas caviae. J Bacteriol 180:667–673
    [Google Scholar]
  13. Gerngross T. U., Reilly P., Stubbe J., Sinskey A. J., Peoples O. P. 1993; Immunocytochemical analysis of poly- β-hydroxybutyrate (PHB) synthase in Alcaligenes eutrophus H16: localization of the synthase enzyme at the surface of PHB granules. J Bacteriol 175:5289–5293
    [Google Scholar]
  14. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580
    [Google Scholar]
  15. Haywood G. W., Anderson A. J., Chu L., Dawes E. A. 1988; Characterization of two 3-ketothiolases possessing differing substrate specificities in the polyhydroxyalkanoate synthesizing organism Alcaligenes eutrophus. FEMS Microbiol Lett 52:91–96
    [Google Scholar]
  16. Haywood G., Anderson A., Dawes E. 1989; The importance of PHB-synthase substrate-specificity in polyhydroxyalkanoate synthesis by Alcaligenes eutrophus. FEMS Microbiol Lett 57:1–6
    [Google Scholar]
  17. Henikoff S., Henikoff J. G. 1993; Performance evaluation of amino acid substitution matrices. Proteins 17:49–61
    [Google Scholar]
  18. Holden M. T. G., Titball R. W., Peacock S. J., Cerdeno-Tarraga A. M., Atkins T., Crossman L. C., Pitt T., Churcher C., Mungall K. other authors 2004; Genomic plasticity of the causative agent of melioidosis, Burkholderia pseudomallei. Proc Natl Acad Sci U S A 101:14240–14245
    [Google Scholar]
  19. Huisman G. W., Wonink E., Meima R., Kazemier B., Terpstra P., Witholt B. 1991; Metabolism of poly(3-hydroxyalkanoates) (PHAs) by Pseudomonas oleovorans. Identification and sequences of genes and function of the encoded proteins in the synthesis and degradation of PHA. J Biol Chem 266:2191–2198
    [Google Scholar]
  20. Jeffke T., Gropp N. H., Kaiser C., Grzeszik C., Kusian B., Bowien B. 1999; Mutational analysis of the cbb operon (CO2 assimilation) promoter of Ralstonia eutropha. J Bacteriol 181:4374–4380
    [Google Scholar]
  21. Jendrossek D. 2002; Extracellular polyhydroxyalkanoate depolymerases: the key enzymes of PHA degradation. In Biopolymers, vol. 3b: Polyesters II – Properties and Chemical Synthesis pp 41–84 Edited by Doi Y., Steinbüchel A. Weinheim: Wiley;
    [Google Scholar]
  22. Jendrossek D., Handrick R. 2002; Microbial degradation of polyhydroxyalkanoates. Annu Rev Microbiol 56:403–432
    [Google Scholar]
  23. Jendrossek D., Schirmer A., Schlegel H. G. 1996; Biodegradation of polyhydroxyalkanoic acids. Appl Microbiol Biotechnol 46:451–463
    [Google Scholar]
  24. Kobayashi T., Uchino K., Abe T., Yamazaky Y., Saito T. 2005; Novel intracellular 3-hydroxybutyrate-oligomer hydrolase in Wautersia eutropha H16. J Bacteriol 187:5129–5135
    [Google Scholar]
  25. Lund P. A. 2001; Microbial molecular chaperones. Adv Microb Physiol 44:93–140
    [Google Scholar]
  26. Macnab R. M. 2003; How bacteria assemble flagella. Annu Rev Microbiol 57:77–110
    [Google Scholar]
  27. Madison L. L., Huisman G. W. 1999; Metabolic engineering of poly(3-hydroxyalkanoates): from DNA to plastic. Microbiol Mol Biol Rev 63:21–53
    [Google Scholar]
  28. Nierman W. C., DeShazer D., Kim H. S., Tettelin H., Nelson K. E., Feldblyum T., Ulrich R. L., Ronning C. M., Brinkac L. M. other authors 2004; Structural flexibility in the Burkholderia mallei genome. Proc Natl Acad Sci U S A 101:14246–14251
    [Google Scholar]
  29. Oeding V., Schlegel H. G. 1973; β-Ketothiolase from Hydrogenomonas eutropha H16 and its significance in the regulation of poly- β-hydroxybutyrate metabolism. Biochem J 134:239–248
    [Google Scholar]
  30. Overhage J., Steinbüchel A., Priefert H. 2002; Biotransformation of eugenol to ferulic acid by a recombinant strain of Ralstonia eutropha H16. Appl Environ Microbiol 68:4315–4321
    [Google Scholar]
  31. Page R. D. 1996; TreeView: an application to display phylogenetic trees on personal computers. Comput Appl Biosci 12:357–358
    [Google Scholar]
  32. Peoples O. P., Sinskey A. J. 1989; Poly- β-hydroxybutyrate (PHB) biosynthesis in Alcaligenes eutrophus H16. Identification and characterization of the PHB polymerase gene ( phbC. J Biol Chem 264:15298–15303
    [Google Scholar]
  33. Pfitzner J., Schlegel H. G. 1973; Denitrification in Hydrogenomonas eutropha strain H16. Arch Mikrobiol 90:199–211
    [Google Scholar]
  34. Pohlmann A., Fricke W. F., Reinecke F., Kusian B., Liesegang H., Cramm R., Eitinger T., Ewering C., Pötter M. other authors 2006; Hydrogen-based biotechnology: genome sequence of the bioplastic-producing “Knallgas” bacterium Ralstonia eutropha H16. Nat Biotechnol 24:1257–1262
    [Google Scholar]
  35. Pötter M., Steinbüchel A. 2005; Poly(3-hydroxybutyrate) granule-associated proteins: impacts on poly(3-hydroxybutyrate) synthesis and degradation. Biomacromolecules 6:552–560
    [Google Scholar]
  36. Pötter M., Steinbüchel A. 2006; Biogenesis and structure of polyhydroxyalkanoate granules. In Microbiology Monographs,vol. 1: Inclusions in Prokaryotes, pp 109–136 Edited by Steinbüchel A., Shively J. M. Berlin, Heidelberg: Springer Verlag;
    [Google Scholar]
  37. Pötter M., Madkour M. H., Mayer F., Steinbüchel A. 2002; Regulation of phasin expression and polyhydroxyalkanoate (PHA) granule formation in Ralstonia eutropha H16. Microbiology 148:2413–2426
    [Google Scholar]
  38. Pötter M., Müller H., Reinecke F., Wieczorek R., Fricke F., Bowien B., Friedrich B., Steinbüchel A. 2004; The complex structure of polyhydroxybutyrate (PHB) granules: four orthologous and paralogous phasins occur in Ralstonia eutropha. Microbiology 150:2301–2311
    [Google Scholar]
  39. Pötter M., Müller H., Steinbüchel A. 2005; Influence of homologous phasins (PhaP) on PHA accumulation and regulation of their expression by the transcriptional repressor PhaR in Ralstonia eutropha H16. Microbiology 151:825–833
    [Google Scholar]
  40. Raberg M., Reinecke F., Reichelt R., Malkus U., König S., Pötter M., Fricke W. F., Pohlmann A., Voigt B. other authors 2008; Ralstonia eutropha H16 flagellation changes according to nutrient supply and state of poly(3-hydroxybutyrate) accumulation. Appl Environ Microbiol 74:4477–4490
    [Google Scholar]
  41. Rehm B. H. A. 2003; Polyester synthases: natural catalysts for plastics. Biochem J 376:15–33
    [Google Scholar]
  42. Rehm B. H., Krüger N., Steinbüchel A. 1998; A new metabolic link between fatty acid de novo synthesis and polyhydroxyalkanoic acid synthesis. The phaG gene from Pseudomonas putida KT2440 encodes a 3-hydroxyacyl-acyl carrier protein-coenzyme A transferase. J Biol Chem 273:24044–24051
    [Google Scholar]
  43. Reinecke F., Steinbüchel A. 2009; Ralstonia eutropha strain H16 as model organism for PHA metabolism and for biotechnological production of technically interesting biopolymers. J Mol Microbiol Biotechnol 16:91–108
    [Google Scholar]
  44. Saegusa H., Shiraki M., Kanai C., Saito T. 2001; Cloning of an intracellular poly [d(−)-3-hydroxybutyrate] depolymerase gene from Ralstonia eutropha H16 and characterization of the gene product. J Bacteriol 183:94–100
    [Google Scholar]
  45. Saegusa H., Shiraki M., Saito T. 2002; Cloning of an intracellular d(−)-3-hydroxybutyrate oligomer hydrolase gene from Ralstonia eutropha H16 and identification of the active site serine residue by site-directed mutagenesis. J Biosci Bioeng 94:106–112
    [Google Scholar]
  46. Saitou N., Nei M. 1987; The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425
    [Google Scholar]
  47. Schlegel H. G., Gottschalk G., von Bartha R. 1961; Formation and utilization of poly- β-hydroxybutyric acid by Knallgas bacteria ( Hydrogenomonas. Nature 191:463–465
    [Google Scholar]
  48. Schlegel H. G., Lafferty R., Krauss I. 1970a; The isolation of mutants not accumulating poly- β-hydroxybutyric acid. Arch Mikrobiol 71:283–294
    [Google Scholar]
  49. Schlegel H. G., Lafferty R., Krauss I. 1970b; Bacterial mutants of Hydrogenomonas lacking poly- β-hydroxybutyric acid. Experientia 26:554–555
    [Google Scholar]
  50. Schubert P., Steinbüchel A., Schlegel H. G. 1988; Cloning of the Alcaligenes eutrophus gene for synthesis of poly- β-hydroxybutyric acid and synthesis of PHB in Escherichia coli. J Bacteriol 170:5837–5847
    [Google Scholar]
  51. Schubert P., Krüger N., Steinbüchel A. 1991; Molecular analysis of the Alcaligenes eutrophus poly(3-hydroxybutyrate) biosynthetic operon – identification of the N-terminus of poly(3-hydroxybutyrate) synthase and identification of the promoter. J Bacteriol 173:168–175
    [Google Scholar]
  52. Schwartz E., Friedrich B. 2001; A physical map of the megaplasmid pHG1, one of three genomic replicons in Ralstonia eutropha H16. FEMS Microbiol Lett 201:213–219
    [Google Scholar]
  53. Schwartz E., Henne A., Cramm R., Eitinger T., Friedrich B., Gottschalk G. 2003; Complete nucleotide sequence of pHG1: a Ralstonia eutropha H16 megaplasmid encoding key enzymes of H2-based lithoautotrophy and anaerobiosis. J Mol Biol 332:369–383
    [Google Scholar]
  54. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Biotechnology 1:784–791
    [Google Scholar]
  55. Slater S. C., Voige W. H., Dennis D. E. 1988; Cloning and expression in Escherichia coli of the Alcaligenes eutrophus H16 poly- β-hydroxybutyrate biosynthetic pathway. J Bacteriol 170:4431–4436
    [Google Scholar]
  56. Slater S., Houmiel K. L., Tran M., Mitsky T. A., Taylor N. B., Padgette S. R., Gruys K. J. 1998; Multiple β-ketothiolases mediate poly( β-hydroxyalkanoate) copolymer synthesis in Ralstonia eutropha. J Bacteriol 180:1979–1987
    [Google Scholar]
  57. Spiekermann P., Rehm B. H., Kalscheuer R., Baumeister D., Steinbüchel A. 1999; A sensitive, viable-colony staining method using Nile red for direct screening of bacteria that accumulate polyhydroxyalkanoic acids and other lipid storage compounds. Arch Microbiol 171:73–80
    [Google Scholar]
  58. Srienc F., Arnold B., Bailey J. E. 1984; Characterization of intracellular accumulation of poly- β-hydroxybutyrate (PHB) in individual cells of Alcaligenes eutrophus H16 by flow cytometry. Biotechnol Bioeng 26:982–987
    [Google Scholar]
  59. Steinbüchel A. 2001; Perspectives for biotechnological production and utilization of biopolymers: metabolic engineering of polyhydroxyalkanoate biosynthesis pathways as a successful example. Macromol Biosci 1:1–24
    [Google Scholar]
  60. Taguchi K., Taguchi S., Sudesh K., Maehara A., Tsuge T., Doi Y. 2002; Metabolic pathways and engineering of PHA biosynthesis. In Biopolymers – vol. 3A, Polyesters I – Biological Systems and Biotechnological Production pp 217–248 Edited by Doi Y., Steinbüchel A. Weinheim: Wiley VCH;
    [Google Scholar]
  61. Thompson J. D., Higgins D. G., Gibson T. J. 1994; clustal w: improving the sensitivity of progressive multiple sequence alignment through sequence weighting, position-specific gap penalties and weight matrix choice. Nucleic Acids Res 22:4673–4680
    [Google Scholar]
  62. Uchino K., Saito T., Jendrossek D. 2008; Poly(3-hydroxybutyrate) (PHB) depolymerase PhaZa1 is involved in mobilization of accumulated PHB in Ralstonia eutropha H16. Appl Environ Microbiol 74:1058–1063
    [Google Scholar]
  63. Valentin H. E., Steinbüchel A. 1993; Cloning and characterization of the Methylobacterium extorquens polyhydroxyalkanoic-acid-synthase structural gene. Appl Microbiol Biotechnol 39:309–317
    [Google Scholar]
  64. Walde E. 1962; Untersuchungen über Wachstum und Speicherstoffsynthese von Hydrogenomonas eutropha. Arch Mikrobiol 43:109–137
    [Google Scholar]
  65. Wieczorek R., Pries A., Steinbüchel A., Mayer F. 1995; Analysis of a 24-kilodalton protein associated with the polyhydroxyalkanoic acid granules in Alcaligenes eutrophus. J Bacteriol 177:2425–2435
    [Google Scholar]
  66. York G. M., Lupberger J., Tian J. M., Lawrence A. G., Stubbe J., Sinskey A. J. 2003; Ralstonia eutropha H16 encodes two and possibly three intracellular poly[d-(−)-3-hydroxybutyrate] depolymerase genes. J Bacteriol 185:3788–3794
    [Google Scholar]
  67. Zeller M., Pötter M., Reinecke F., Steinbüchel A., Burkitt W. I., Derrick P. J., König S. 2005; Mass spectrometry identifies homologues of phasin PhaP1 protein of Ralstonia eutropha on polyhydroxybutyrate granules. J Biomacromol Mass Spectrom 1:75–84
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.038380-0
Loading
/content/journal/micro/10.1099/mic.0.038380-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error