1887

Abstract

is one of the most important pathogens in pigs and can also cause severe infections in humans. Despite its clinical relevance, very little is known about the factors that contribute to its virulence. Recently, we identified a new putative virulence factor in , the arginine deiminase system (ADS), an arginine catabolic enzyme system encoded by the operon, which enables to survive in an acidic environment. In this study, we focused on ArgR, an ADS-associated regulator belonging to the ArgR/AhrC arginine repressor family. Using an knockout strain we were able to show that ArgR is essential for operon expression and necessary for the biological fitness of . By cDNA expression microarray analyses and quantitative real-time RT-PCR we found that the operon is the only gene cluster regulated by ArgR, which is in contrast to the situation in many other bacteria. Reporter gene analysis with under the control of the promoter demonstrated that ArgR is able to activate the promoter. Electrophoretic mobility shift assays with fragments of the promoter and recombinant ArgR, and chromatin immunoprecipitation with antibodies directed against ArgR, revealed that ArgR interacts with the promoter and by binding to a region from −147 to −72 bp upstream of the transcriptional start point. Overall, our results show that in , ArgR is an essential, system-specific transcriptional regulator of the ADS that interacts directly with the promoter .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.043067-0
2011-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/572.html?itemId=/content/journal/micro/10.1099/mic.0.043067-0&mimeType=html&fmt=ahah

References

  1. Arends J. P., Zanen H. C. 1988; Meningitis caused by Streptococcus suis in humans. Rev Infect Dis 10:131–137
    [Google Scholar]
  2. Barcelona-Andrés B., Marina A., Rubio V. 2002; Gene structure, organization, expression, and potential regulatory mechanisms of arginine catabolism in Enterococcus faecalis . J Bacteriol 184:6289–6300
    [Google Scholar]
  3. Benga L., Goethe R., Rohde M., Valentin-Weigand P. 2004; Non-encapsulated strains reveal novel insights in invasion and survival of Streptococcus suis in epithelial cells. Cell Microbiol 6:867–881
    [Google Scholar]
  4. Blakemore R. P., Canale-Parola E. 1976; Arginine catabolism by Treponema denticola . J Bacteriol 128:616–622
    [Google Scholar]
  5. Braunstein M., Rose A. B., Holmes S. G., Allis C. D., Broach J. R. 1993; Transcriptional silencing in yeast is associated with reduced nucleosome acetylation. Genes Dev 7:592–604
    [Google Scholar]
  6. Broman K., Lauwers N., Stalon V., Wiame J. M. 1978; Oxygen and nitrate in utilization by Bacillus licheniformis of the arginase and arginine deiminase routes of arginine catabolism and other factors affecting their syntheses. J Bacteriol 135:920–927
    [Google Scholar]
  7. Burne R. A., Parsons D. T., Marquis R. E. 1989; Cloning and expression in Escherichia coli of the genes of the arginine deiminase system of Streptococcus sanguis NCTC 10904. Infect Immun 57:3540–3548
    [Google Scholar]
  8. Caldara M., Charlier D., Cunin R. 2006; The arginine regulon of Escherichia coli : whole-system transcriptome analysis discovers new genes and provides an integrated view of arginine regulation. Microbiology 152:3343–3354
    [Google Scholar]
  9. Champomier Vergès, M. C., Zuñiga M., Morel-Deville F., Perez-Martinez G., Zagorec M., Ehrlich S. D. 1999; Relationships between arginine degradation, pH and survival in Lactobacillus sakei . FEMS Microbiol Lett 180:297–304
    [Google Scholar]
  10. Chanter N., Jones P. W., Alexander T. J. 1993; Meningitis in pigs caused by Streptococcus suis – a speculative review. Vet Microbiol 36:39–55
    [Google Scholar]
  11. Chaussee M. S., Somerville G. A., Reitzer L., Musser J. M. 2003; Rgg coordinates virulence factor synthesis and metabolism in Streptococcus pyogenes . J Bacteriol 185:6016–6024
    [Google Scholar]
  12. Cherney L. T., Cherney M. M., Garen C. R., Lu G. J., James M. N. 2008; Crystal structure of the arginine repressor protein in complex with the DNA operator from Mycobacterium tuberculosis . J Mol Biol 384:1330–1340
    [Google Scholar]
  13. Clifton-Hadley F. A., Alexander T. J. 1980; The carrier site and carrier rate of Streptococcus suis type II in pigs. Vet Rec 107:40–41
    [Google Scholar]
  14. Crow V. L., Thomas T. D. 1982; Arginine metabolism in lactic streptococci. J Bacteriol 150:1024–1032
    [Google Scholar]
  15. Dong Y. Q., Chen Y. Y. M., Burne R. A. 2004; Control of expression of the arginine deiminase operon of Streptococcus gordonii by CcpA and Flp. J Bacteriol 186:2511–2514
    [Google Scholar]
  16. Floderus E., Linder L. E., Sund M. L. 1990; Arginine catabolism by strains of oral streptococci. APMIS 98:1045–1052
    [Google Scholar]
  17. Gardan R., Rapoport G., Debarbouille M. 1995; Expression of the rocDEF operon involved in arginine catabolism in Bacillus subtilis . J Mol Biol 249:843–856
    [Google Scholar]
  18. Garnett J. A., Marincs F., Baumberg S., Stockley P. G., Phillips S. E. 2008; Structure and function of the arginine repressor–operator complex from Bacillus subtilis . J Mol Biol 379:284–298
    [Google Scholar]
  19. Gottschalk M., Xu J., Calzas C., Segura M. 2010; Streptococcus suis : a new emerging or an old neglected zoonotic pathogen?. Future Microbiol 5:371–391
    [Google Scholar]
  20. Grandori R., Lavoie T. A., Pflumm M., Tian G. L., Niersbach H., Maas W. K., Fairman R., Carey J. 1995; The DNA-binding domain of the hexameric arginine repressor. J Mol Biol 254:150–162
    [Google Scholar]
  21. Gruening P., Fulde M., Valentin-Weigand P., Goethe R. 2006; Structure, regulation, and putative function of the arginine deiminase system of Streptococcus suis . J Bacteriol 188:361–369
    [Google Scholar]
  22. Hashim S., Kwon D. H., Abdelal A., Lu C. D. 2004; The arginine regulatory protein mediates repression by arginine of the operons encoding glutamate synthase and anabolic glutamate dehydrogenase in Pseudomonas aeruginosa . J Bacteriol 186:3848–3854
    [Google Scholar]
  23. Hernández-Flores J. L., Lopez-Lopez K., Garciduenas-Pina R., Jofre-Garfias A. E., Alvarez-Morales A. 2004; The global arginine regulator ArgR controls expression of argF in Pseudomonas syringae pv. phaseolicola but is not required for the synthesis of phaseolotoxin or for the regulated expression of argK . J Bacteriol 186:3653–3655
    [Google Scholar]
  24. Hoffmann E., Ashouri J., Wolter S., Doerrie A., Dittrich-Breiholz O., Schneider H., Wagner E. F., Troppmair J., Mackman N. other authors 2008; Transcriptional regulation of EGR-1 by the interleukin-1-JNK-MKK7-c-Jun pathway. J Biol Chem 283:12120–12128
    [Google Scholar]
  25. Kiupakis A. K., Reitzer L. 2002; ArgR-independent induction and ArgR-dependent superinduction of the astCADBE operon in Escherichia coli . J Bacteriol 184:2940–2950
    [Google Scholar]
  26. Klingel U., Miller C. M., North A. K., Stockley P. G., Baumberg S. 1995; A binding-site for activation by the Bacillus subtilis AhrC protein, a repressor activator of arginine metabolism. Mol Gen Genet 248:329–340
    [Google Scholar]
  27. Larsen R., Buist G., Kuipers O. P., Kok J. 2004; ArgR and AhrC are both required for regulation of arginine metabolism in Lactococcus lactis . J Bacteriol 186:1147–1157
    [Google Scholar]
  28. Larsen R., Kok J., Kuipers O. P. 2005; Interaction between ArgR and AhrC controls regulation of arginine metabolism in Lactococcus lactis . J Biol Chem 280:19319–19330
    [Google Scholar]
  29. Larsen R., van Hijum S. A., Martinussen J., Kuipers O. P., Kok J. 2008; Transcriptome analysis of the Lactococcus lactis ArgR and AhrC regulons. Appl Environ Microbiol 74:4768–4771
    [Google Scholar]
  30. Liu Y., Dong Y., Chen Y. Y., Burne R. A. 2008; Environmental and growth phase regulation of the Streptococcus gordonii arginine deiminase genes. Appl Environ Microbiol 74:5023–5030
    [Google Scholar]
  31. Lu C. D., Abdelal A. T. 1999; Role of ArgR in activation of the ast operon, encoding enzymes of the arginine succinyltransferase pathway in Salmonella typhimurium . J Bacteriol 181:1934–1938
    [Google Scholar]
  32. Lu C. D., Yang Z., Li W. 2004; Transcriptome analysis of the ArgR regulon in Pseudomonas aeruginosa . J Bacteriol 186:3855–3861
    [Google Scholar]
  33. Maas W. K. 1994; The arginine repressor of Escherichia coli . Microbiol Rev 58:631–640
    [Google Scholar]
  34. Maghnouj A., Sousa Cabral T. F., Stalon V., Vander W. C. 1998; The arcABDC gene cluster, encoding the arginine deiminase pathway of Bacillus licheniformis , and its activation by the arginine repressor argR . J Bacteriol 180:6468–6475
    [Google Scholar]
  35. Maghnouj A., Abu-Bakr A. A., Baumberg S., Stalon V., Vander W. C. 2000; Regulation of anaerobic arginine catabolism in Bacillus licheniformis by a protein of the Crp/Fnr family. FEMS Microbiol Lett 191:227–234
    [Google Scholar]
  36. Makarova K. S., Mironov A. A., Gelfand M. S. 2001; Conservation of the binding site for the arginine repressor in all bacterial lineages. Genome Biol 2:RESEARCH0013
    [Google Scholar]
  37. Mercenier A., Simon J. P., Haas D., Stalon V. 1980; Catabolism of l-arginine by Pseudomonas aeruginosa . J Gen Microbiol 116:381–389
    [Google Scholar]
  38. Münch R., Hiller K., Grote A., Scheer M., Klein J., Schobert M., Jahn D. 2005; Virtual footprint and PRODORIC: an integrative framework for regulon prediction in prokaryotes. Bioinformatics 21:4187–4189
    [Google Scholar]
  39. Park S. M., Lu C. D., Abdelal A. T. 1997; Cloning and characterization of argR , a gene that participates in regulation of arginine biosynthesis and catabolism in Pseudomonas aeruginosa PAO1. J Bacteriol 179:5300–5308
    [Google Scholar]
  40. Rimmele M., Boos W. 1994; Trehalose-6-phosphate hydrolase of Escherichia coli . J Bacteriol 176:5654–5664
    [Google Scholar]
  41. Rosenkranz M., Elsner H. A., Sturenburg H. J., Weiller C., Rother J., Sobottka I. 2003; Streptococcus suis meningitis and septicemia contracted from a wild boar in Germany. J Neurol 250:869–870
    [Google Scholar]
  42. Ryan S., Begley M., Gahan C. G., Hill C. 2009; Molecular characterization of the arginine deiminase system in Listeria monocytogenes : regulation and role in acid tolerance. Environ Microbiol 11:432–445
    [Google Scholar]
  43. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  44. Saulnier D. M. A., Molenaar D., de Vos W. A., Gibson G. R., Kolida S. 2007; Identification of prebiotic fructooligosaccharide metabolism in Lactobacillus plantarum WCFS1 through microarrays. Appl Environ Microbiol 73:1753–1765
    [Google Scholar]
  45. Smith H. E., Wisselink H. J., Vecht U., Gielkens A. L. J., Smits M. A. 1995; High-efficiency transformation and gene inactivation in Streptococcus suis type-2. Microbiology 141:181–188
    [Google Scholar]
  46. Smith H. E., Damman M., van der Velde J., Wagenaar F., Wisselink H. J., Stockhofe-Zurwieden N., Smits M. A. 1999; Identification and characterization of the cps locus of Streptococcus suis serotype 2: the capsule protects against phagocytosis and is an important virulence factor. Infect Immun 67:1750–1756
    [Google Scholar]
  47. van den Hoff M. J., Jonker A., Beintema J. J., Lamers W. H. 1995; Evolutionary relationships of the carbamoylphosphate synthetase genes. J Mol Evol 41:813–832
    [Google Scholar]
  48. Willemoës M., Kilstrup M. 2005; Nucleoside triphosphate synthesis catalysed by adenylate kinase is ADP dependent. Arch Biochem Biophys 444:195–199
    [Google Scholar]
  49. Winterhoff N., Goethe R., Gruening P., Rohde M., Kalisz H., Smith H. E., Valentin-Weigand P. 2002; Identification and characterization of two temperature-induced surface-associated proteins of Streptococcus suis with high homologies to members of the arginine deiminase system of Streptococcus pyogenes . J Bacteriol 184:6768–6776
    [Google Scholar]
  50. Zeng L., Dong Y., Burne R. A. 2006; Characterization of cis -acting sites controlling arginine deiminase gene expression in Streptococcus gordonii . J Bacteriol 188:941–949
    [Google Scholar]
  51. Zuñiga M., Miralles M. C., Perez-Martinez G. 2002a; The product of arcR , the sixth gene of the arc operon of Lactobacillus sakei , is essential for expression of the arginine deiminase pathway. Appl Environ Microbiol 68:6051–6058
    [Google Scholar]
  52. Zuñiga M., Perez G., Gonzalez-Candelas F. 2002b; Evolution of arginine deiminase (ADI) pathway genes. Mol Phylogenet Evol 25:429–444
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.043067-0
Loading
/content/journal/micro/10.1099/mic.0.043067-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error