1887

Abstract

The alkaliphilic bacterium CECT5344 is able to grow with cyanide as the sole nitrogen source. Membrane fractions from cells grown under cyanotrophic conditions catalysed the production of oxaloacetate from -malate. Several enzymic activities of the tricarboxylic acid and glyoxylate cycles in association with the cyanide-insensitive respiratory pathway seem to be responsible for the oxaloacetate formation . Thus, in cyanide-grown cells, citrate synthase and isocitrate lyase activities were significantly higher than those observed with other nitrogen sources. Malate dehydrogenase activity was undetectable, but a malate : quinone oxidoreductase activity coupled to the cyanide-insensitive alternative oxidase was found in membrane fractions from cyanide-grown cells. Therefore, oxaloacetate production was linked to the cyanide-insensitive respiration in CECT5344. Cyanide and oxaloacetate reacted chemically inside the cells to produce a cyanohydrin (2-hydroxynitrile), which was further converted to ammonium. In addition to cyanide, strain CECT5344 was able to grow with several cyano derivatives, such as 2- and 3-hydroxynitriles. The specific system required for uptake and metabolization of cyanohydrins was induced by cyanide and by 2-hydroxynitriles, such as the cyanohydrins of oxaloacetate and 2-oxoglutarate.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045286-0
2011-03-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/3/739.html?itemId=/content/journal/micro/10.1099/mic.0.045286-0&mimeType=html&fmt=ahah

References

  1. Akcil A., Mudder T. 2003; Microbial destruction of cyanide wastes in gold mining: process review. Biotechnol Lett 25:445–450
    [Google Scholar]
  2. Asmus E., Garschagen H. 1953; The use of barbituric acid for the photometric determination of cyanide and thiocyanate. Z Anal Chem 138:414–422
    [Google Scholar]
  3. Blumenthal S. G., Hendrickson H. R., Abrol Y. P., Conn E. E. 1968; Cyanide metabolism in higher plants. 3. The biosynthesis of beta-cyanolanine. J Biol Chem 243:5302–5307
    [Google Scholar]
  4. Borchers R. 1977; Allantoin determination. Anal Biochem 79:612–613
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72:248–254
    [Google Scholar]
  6. Castric P. A., Strobel G. A. 1969; Cyanide metabolism by Bacillus megaterium . J Biol Chem 244:4089–4094
    [Google Scholar]
  7. Díaz-Pérez A. L., Román-Doval C., Díaz-Pérez C., Cervantes C., Sosa-Aguirre C. R., López-Meza J. E., Campos-García J. 2007; Identification of the aceA gene encoding isocitrate lyase required for the growth of Pseudomonas aeruginosa on acetate, acyclic terpenes and leucine. FEMS Microbiol Lett 269:309–316
    [Google Scholar]
  8. Dubey S. K., Holmes D. S. 1995; Biological cyanide destruction mediated by microorganisms. World J Microbiol Biotechnol 11:257–265
    [Google Scholar]
  9. Ebbs S. 2004; Biological degradation of cyanide compounds. Curr Opin Biotechnol 15:231–236
    [Google Scholar]
  10. Eidels L., Preiss J. 1970; Citrate synthase. A regulatory enzyme from Rhodopseudomonas capsulata . J Biol Chem 245:2937–2945
    [Google Scholar]
  11. Fernández R. F., Kunz D. A. 2005; Bacterial cyanide oxygenase is a suite of enzymes catalyzing the scavenging and adventitious utilization of cyanide as a nitrogenous growth substrate. J Bacteriol 187:6396–6402
    [Google Scholar]
  12. Gerasimova T., Novikov A., Osswald S., Yanenko A. 2004; Screening, characterization and application of cyanide-resistant nitrile hydratases. Eng Life Sci 4:543–546
    [Google Scholar]
  13. Goldberg D. M., Ellis G. 1983; Isocitrate dehydrogenase. In Methods of Enzymatic Analysis vol III pp 183–190 Edited by Bergmeyer H. U., Bergmeyer J., Grassl M., Weinheim. Verlag Chemie;
    [Google Scholar]
  14. Gupta N., Balomajumder C., Agarwal V. K. 2010; Enzymatic mechanism and biochemistry for cyanide degradation: a review. J Hazard Mater 176:1–13
    [Google Scholar]
  15. Hamel R. D., Appanna V. D., Viswanatha T., Puiseux-Dao S. 2004; Overexpression of isocitrate lyase is an important strategy in the survival of Pseudomonas fluorescens exposed to aluminum. Biochem Biophys Res Commun 317:1189–1194
    [Google Scholar]
  16. Huertas M. J., Luque-Almagro V. M., Martínez-Luque M., Blasco R., Moreno-Vivián C., Castillo F., Roldán M. D. 2006; Cyanide metabolism of Pseudomonas pseudoalcaligenes CECT5344: role of siderophores. Biochem Soc Trans 34:152–155
    [Google Scholar]
  17. Huertas M. J., Sáez L. P., Roldán M. D., Luque-Almagro V. M., Martínez-Luque M., Blasco R., Castillo F., Moreno-Vivián C., García-García I. 2010; Alkaline cyanide degradation by Pseudomonas pseudoalcaligenes CECT5344 in a batch reactor. Influence of pH. J Hazard Mater 179:72–78
    [Google Scholar]
  18. Kather B., Stingl K., van der Rest M. E., Altendorf K., Molenaar D. 2000; Another unusual type of citric acid cycle enzyme in Helicobacter pylori : the malate : quinone oxidoreductase. J Bacteriol 182:3204–3209
    [Google Scholar]
  19. Kretzschmar U., Rückert A., Jeoung J.-H., Görisch H. 2002; Malate : quinone oxidoreductase is essential for growth on ethanol or acetate in Pseudomonas aeruginosa . Microbiology 148:3839–3847
    [Google Scholar]
  20. Kunz D. A., Chen J.-L., Pan G. 1998; Accumulation of α -keto acids as essential components in cyanide assimilation by Pseudomonas fluorescens NCIMB 11764. Appl Environ Microbiol 64:4452–4459
    [Google Scholar]
  21. Kunz D. A., Fernández R. F., Parab P. 2001; Evidence that bacterial cyanide oxygenase is a pterin-dependent hydroxylase. Biochem Biophys Res Commun 287:514–518
    [Google Scholar]
  22. Luque-Almagro V. M., Huertas M. J., Martínez-Luque M., Moreno-Vivián C., Roldán M. D., García-Gil L. J., Castillo F., Blasco R. 2005a; Bacterial degradation of cyanide and its metal complexes under alkaline conditions. Appl Environ Microbiol 71:940–947
    [Google Scholar]
  23. Luque-Almagro V. M., Blasco R., Huertas M. J., Martínez-Luque M., Moreno-Vivián C., Castillo F., Roldán M. D. 2005b; Alkaline cyanide biodegradation by Pseudomonas pseudoalcaligenes CECT5344. Biochem Soc Trans 33:168–169
    [Google Scholar]
  24. Luque-Almagro V. M., Huertas M. J., Roldán M. D., Moreno-Vivián C., Martínez-Luque M., Blasco R., Castillo F. 2007; The cyanotrophic bacterium Pseudomonas pseudoalcaligenes CECT5344 responds to cyanide by defence mechanisms against iron deprivation, oxidative damage and nitrogen stress. Environ Microbiol 9:1541–1549
    [Google Scholar]
  25. Luque-Almagro V. M., Huertas M. J., Sáez L. P., Luque-Romero M. M., Moreno-Vivián C., Castillo F., Roldán M. D., Blasco R. 2008; Characterization of the Pseudomonas pseudoalcaligenes CECT5344 cyanase, an enzyme that is not essential for cyanide assimilation. Appl Environ Microbiol 74:6280–6288
    [Google Scholar]
  26. Martínez Luque-Romero M., Castillo F. 1991; Inhibition of aconitase and fumarase by nitrogen compounds in Rhodobacter capsulatus . Arch Microbiol 155:149–152
    [Google Scholar]
  27. Molenaar D., van der Rest M. E., Petrović S. 1998; Biochemical and genetic characterization of the membrane-associated malate dehydrogenase (acceptor) from Corynebacterium glutamicum . Eur J Biochem 254:395–403
    [Google Scholar]
  28. Morrison G. R. 1971; Microchemical determination of organic nitrogen with Nessler reagent. Anal Biochem 43:527–532
    [Google Scholar]
  29. O'Reilly C., Turner P. D. 2003; The nitrilase family of CN hydrolysing enzymes – a comparative study. J Appl Microbiol 95:1161–1174
    [Google Scholar]
  30. Pessi G., Haas D. 2004; Cyanogenesis. In Pseudomonas vol III pp 671–686 Edited by Ramos J. L. New York: Kluwer Academic/Plenum Publishers;
    [Google Scholar]
  31. Podar M., Eads J. R., Richardson T. H. 2005; Evolution of a microbial nitrilase gene family: a comparative and environmental genomics study. BMC Evol Biol 5:42–54
    [Google Scholar]
  32. Quesada A., Guijo M. I., Merchán F., Blázquez B., Igeño M. I., Blasco R. 2007; Essential role of cytochrome bd -related oxidase in cyanide resistance of Pseudomonas pseudoalcaligenes CECT5344. Appl Environ Microbiol 73:5118–5124
    [Google Scholar]
  33. Raybuck S. A. 1992; Microbes and microbial enzymes for cyanide degradation. Biodegradation 3:3–18
    [Google Scholar]
  34. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  35. Smith A. F. 1983; Malate dehydrogenase. In Methods of Enzymatic Analysis vol III pp 163–171 Edited by Bergmeyer H. U., Bergmeyer J., Grassl M., Weinheim. Verlag Chemie;
    [Google Scholar]
  36. Solomonson L. P. 1981; Cyanide as a metabolic inhibitor. In Cyanide in Biology pp 11–28 Edited by Vennesland B., Conn E. E., Knowles C. J., Westley J., Wissing F. New York: Academic Press;
    [Google Scholar]
  37. Zagrobelny M., Bak S., Møller B. L. 2008; Cyanogenesis in plants and arthropods. Phytochemistry 69:1457–1468
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045286-0
Loading
/content/journal/micro/10.1099/mic.0.045286-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF

Supplementary material 2

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error