1887

Abstract

Major poultry pathogens and share a gene encoding a putative cysteine protease CysP similar to papain cysteine protease (C1A subfamily). Comparison of the gene sequences of 18 and 10 strains sequenced in this study showed polymorphisms, including deletions. Seven strains, including the type strain WVU 1853, had a 39 bp deletion in the 3′ end of the gene. In the same region, all strains showed a deletion of 66 bp. Immunoblot analysis with specific antibodies demonstrated that strains expressed CysP, which was approximately 65 kDa. Both and were able to digest chicken IgG (cIgG). Incubation of cIgG (∼170 kDa) with or cells (∼15 h at 37 °C) resulted in a papain-like cleavage pattern of cIgG and fragments corresponding to the antigen-binding fragment of IgG (Fab, ∼45 kDa) and the crystallizable region fragment (Fc) of the IgG heavy chain (dimer of ∼60 kDa). Iodoacetamide (50 mM) prevented cleavage of cIgG by both species. Following site-directed mutagenesis (eight TGA codons were changed to TGG) the gene of ULB 925 was expressed as a His-tagged protein in a cell-free system. Purified recombinant CysP (rCysP; ∼67 kDa, pI∼8) cleaved cIgG into Fab and Fc fragments. This indicates that CysP is responsible for the cIgG cleavage caused by and, probably, by . This is the first evidence to our knowledge that mycoplasmas have enzymes that can cleave the host IgG and indicates a novel strategy used by and for prolonged survival despite the antibody response of their host.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.045641-0
2011-02-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/2/362.html?itemId=/content/journal/micro/10.1099/mic.0.045641-0&mimeType=html&fmt=ahah

References

  1. Benčina, D. 2002; Haemagglutinins of pathogenic avian mycoplasmas. Avian Pathol 31:535–547
    [Google Scholar]
  2. Benčina D., Bradbury J. M. 1991; Indirect immunoperoxidase assay for the detection of antibody in chicken Mycoplasma infections. Avian Pathol 20:113–124
    [Google Scholar]
  3. Benčina D., Bradbury J. M. 1992; Combination of immunofluorescence and immunoperoxidase techniques for serotyping mixtures of Mycoplasm a species. J Clin Microbiol 30:407–410
    [Google Scholar]
  4. Benčina D., Kleven S. H., Elfaki M. G., Snoj A., Dovč P., Dorrer D., Russ I. 1994; Variable expression of epitopes on the surface of Mycoplasma gallisepticum demonstrated with monoclonal antibodies. Avian Pathol 23:19–36
    [Google Scholar]
  5. Benčina D., Narat M., Dovč P., Drobnic-Valic M., Habe F., Kleven S. H. 1999; The characterization of Mycoplasma synoviae EF-Tu protein and proteins involved in hemadherence and their N-terminal amino acid sequences. FEMS Microbiol Lett 173:85–94
    [Google Scholar]
  6. Benčina D., Drobnic-Valic M., Horvat S., Narat M., Kleven S. H., Dovč P. 2001; Molecular basis of the length variation in the N-terminal part of Mycoplasma synoviae hemagglutinin. FEMS Microbiol Lett 203:115–123
    [Google Scholar]
  7. Benčina D., Narat M., Bidovec A., Zorman-Rojs O. 2005; Transfer of maternal immunoglobulins and antibodies to Mycoplasma gallisepticum and Mycoplasma synoviae to the allantoic and amniotic fluid of chicken embryos. Avian Pathol 34:463–472
    [Google Scholar]
  8. Berčič R. L., Slavec B., Lavrič M., Narat M., Bidovec A., Dovč P., Benčina D. 2008a; Identification of major immunogenic proteins of Mycoplasma synoviae isolates. Vet Microbiol 127:147–154
    [Google Scholar]
  9. Berčič R. L., Slavec B., Lavrič M., Narat M., Zorman-Rojs O., Dovč P., Benčina D. 2008b; A survey of avian Mycoplasma species for neuraminidase enzymatic activity. Vet Microbiol 130:391–397
    [Google Scholar]
  10. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. 2003; Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500
    [Google Scholar]
  11. Collin M., Olsen A. 2001; Effect of SpeB and EndoS from Streptococcus pyogenes on human immunoglobulins. Infect Immun 69:7187–7189
    [Google Scholar]
  12. Curtis M. A., Aduse-Opoku J., Rangarajan M. 2001; Cysteine proteases of Porphyromonas gingivalis . Crit Rev Oral Biol Med 12:192–216
    [Google Scholar]
  13. Czekalowski J. W., Hall D. A., Woolcock P. 1973; Studies on proteolytic activity of mycoplasmas: gelatinolytic property. J Gen Microbiol 75:125–133
    [Google Scholar]
  14. Demina I. A., Serebryakova M. V., Ladygina V. G., Rogova M. A., Zgoda V. G., Korzhenevskyi D. A., Govorun V. M. 2009; Proteome of the bacterium Mycoplasma gallisepticum . Biochemistry (Mosc 74:165–174
    [Google Scholar]
  15. Dušanić D., Berčič R. L., Cizelj I., Salmič S., Narat M., Benčina D. 2009; Mycoplasma synoviae invades non-phagocytic chicken cells in vitro. Vet Microbiol 138:114–119
    [Google Scholar]
  16. Dybvig K., Zuhua C., Lao P., Jordan D. S., French C. T., Tu A. H., Loraine A. E. 2008; Genome of Mycoplasma arthritidis . Infect Immun 76:4000–4008
    [Google Scholar]
  17. Finn R. D., Mistry J., Tate J., Coggill P., Heger A., Pollington J. E., Gavin O. L., Gunesekaran P., Ceric G. other authors 2010; The Pfam protein families database. Nucleic Acids Res 38:D211–D222
    [Google Scholar]
  18. Gabridge M. G. 1984; In vitro models for host-parasite interactions involving mycoplasmas. Isr J Med Sci 20:920–923
    [Google Scholar]
  19. García-Gómez E., Vaca S., Perez-Mendez A., Ibarra-Caballero J., Perez-Marquez V., Tenorio V. R., Negrete-Abascal E. 2005; Gallibacterium anatis -secreted metalloproteases degrade chicken IgG. Avian Pathol 34:426–429
    [Google Scholar]
  20. Hall T. A. 1999; BioEdit: a user-friendly biological sequence alignment editor and analysis program for Windows 95/98/NT. Nucleic Acids Symp Ser 41:95–98
    [Google Scholar]
  21. Kapur V., Majesky M. W., Li L. L., Black R. A., Musser J. M. 1993; Cleavage of Interleukin 1 β (Il-1 β ) precursor to produce active Il-1 β by a conserved extracellular cysteine protease from Streptococcus pyogenes . Proc Natl Acad Sci U S A 90:7676–7680
    [Google Scholar]
  22. Kerr K. M., Olson N. O. 1970; Pathology of chickens inoculated experimentally or contact-infected with Mycoplasma synoviae . Avian Dis 14:290–320
    [Google Scholar]
  23. Lartigue C., Vashee S., Algire M. A., Chuang R. Y., Benders G. A., Ma L., Noskov V. N., Denisova E. A., Gibson D. G. other authors 2009; Creating bacterial strains from genomes that have been cloned and engineered in yeast. Science 325:1693–1696
    [Google Scholar]
  24. Lauerman L. H., Shah S. M., Williams J. C., Corsiglia C. M., Herring R. J. 1993; Immunoglobulin receptors used in avian Mycoplasma identification. Avian Dis 37:1080–1084
    [Google Scholar]
  25. Milošević Berlič T., Benčina D., Dovč P. 2000; Sequence polymorphisms within the pMGA genes and pMGA antigenic variants in Mycoplasma gallisepticum . FEMS Microbiol Lett 184:133–139
    [Google Scholar]
  26. Narat M., Biček A., Vadnjal R., Benčina D. 2004; Production, characterization and use of monoclonal antibodies recognizing IgY epitopes shared by chicken, turkey, pheasant, peafowl and sparrow. Food Technol Biotechnol 42:175–182
    [Google Scholar]
  27. Negrete-Abascal E., Tenorio V. R., de la Garza M. 1999; Secretion of proteases from Pasteurella multocida isolates. Curr Microbiol 38:64–67
    [Google Scholar]
  28. Noormohammadi A. H., Markham P. F., Duffy M. F., Whithear K. G., Browning G. F. 1998; Multigene families encoding the major hemagglutinins in phylogenetically distinct mycoplasmas. Infect Immun 66:3470–3475
    [Google Scholar]
  29. Noormohammadi A. H., Markham P. F., Kanci A., Whithear K. G., Browning G. F. 2000; A novel mechanism for control of antigenic variation in the haemagglutinin gene family of Mycoplasma synoviae. Mol Microbiol 35:911–923
    [Google Scholar]
  30. Papazisi L., Gorton T. S., Kutish G., Markham P. F., Browning G. F., Nguyen D. K., Swartzell S., Madan A., Mahairas G., Geary S. J. 2003; The complete genome sequence of the avian pathogen Mycoplasma gallisepticum strain Rlow . Microbiology 149:2307–2316
    [Google Scholar]
  31. Potempa M., Potempa J., Kantyka T., Nguyen K., Wawrzonek K., Manandhar S. P., Popadiak K., Riesbeck K., Eick S., Blom A. M. 2009; Interpain A, a cysteine proteinase from Prevotella intermedia , inhibits complement by degrading complement factor C3. PLoS Pathog 5:e1000316
    [Google Scholar]
  32. Rivero-García P. C., Cruz C. V., Alonso P. S., Vaca S., Negrete-Abascal E. 2005; Haemophilus paragallinarum secretes metalloproteases. Can J Microbiol 51:893–896
    [Google Scholar]
  33. Rodwell A. W., Whitcomb R. F. 1983; Methods for direct and indirect measurement of mycoplasma growth. In Methods in Mycoplasmology vol I pp 185–196 Edited by Razin S., Tully J. B. New York: Academic Press;
    [Google Scholar]
  34. Schultz J., Milpetz F., Bork P., Ponting C. P. 1998; SMART, a simple modular architecture research tool: identification of signaling domains. Proc Natl Acad Sci U S A 95:5857–5864
    [Google Scholar]
  35. Shaw L., Golonka E., Potempa J., Foster S. J. 2004; The role and regulation of the extracellular proteases of Staphylococcus aureus . Microbiology 150:217–228
    [Google Scholar]
  36. Sirand-Pugnet P., Lartigue C., Marenda M., Jacob D., Barré A., Barbe V., Schenowitz C., Mangenot S., Couloux A. other authors 2007; Being pathogenic, plastic, and sexual while living with a nearly minimal bacterial genome. PLoS Genet 3:e75
    [Google Scholar]
  37. Staats C. C., Boldo J., Broetto L., Vainstein M., Schrank A. 2007; Comparative genome analysis of proteases, oligopeptide uptake and secretion systems in Mycoplasma spp.. Genet Mol Biol 30:225–229
    [Google Scholar]
  38. Suzuki N., Lee Y. C. 2004; Site-specific N -glycosylation of chicken serum IgG. Glycobiology 14:275–292
    [Google Scholar]
  39. Szczepanek S. M., Tulman E. R., Gorton T. S., Liao X., Lu Z., Zinski J., Aziz F., Frasca S. Jr, Kutish G. F., Geary S. J. 2010; Comparative genomic analyses of attenuated strains of Mycoplasma gallisepticum . Infect Immun 78:1760–1771
    [Google Scholar]
  40. Taylor A. I., Gould H. J., Sutton B. J., Calvert R. A. 2008; Avian IgY binds to a monocyte receptor with IgG-like kinetics despite an IgE-like structure. J Biol Chem 283:16384–16390
    [Google Scholar]
  41. Vasconcelos A. T. R., Ferreira H. B., Bizarro C. V., Bonatto S. L., Carvalho M. O., Pinto P. M., Almeida D. F., Almeida L. G., Almeida R. other authors 2005; Swine and poultry pathogens: the complete genome sequences of two strains of Mycoplasma hyopneumoniae and a strain of Mycoplasma synoviae . J Bacteriol 187:5568–5577
    [Google Scholar]
  42. Villarroel A., Regalado M. P. 1997; A fast and simple method to introduce multiple distant point mutations. Tech Tips Online 2:24–26
    [Google Scholar]
  43. Voros A., Dunnett A., Leduc L. G., Saleh M. T. 2009; Depleting proteins from the growth medium of Mycoplasma capricolum unmasks bacterium-derived enzymatic activities. Vet Microbiol 138:384–389
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.045641-0
Loading
/content/journal/micro/10.1099/mic.0.045641-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error