1887

Abstract

The major bacterial pathogens associated with periodontitis include . We previously discovered that sialic acid stimulates biofilm growth of , and that sialidase activity is key to utilization of sialoconjugate sugars and is involved in host–pathogen interactions . The aim of this work was to assess the influence of the NanH sialidase on initial biofilm adhesion and growth in experiments where the only source of sialic acid was sialoglycoproteins or human oral secretions. After showing that can utilize sialoglycoproteins for biofilm growth, we showed that growth and initial adhesion with sialylated mucin and fetuin were inhibited two- to threefold by the sialidase inhibitor oseltamivir. A similar reduction (three- to fourfold) was observed with a mutant compared with the wild-type. Importantly, these data were replicated using clinically relevant serum and saliva samples as substrates. In addition, the ability of the mutant to form biofilms on glycoprotein-coated surfaces could be restored by the addition of purified NanH, which we show is able to cleave sialic acid from the model glycoprotein fetuin and, much less efficiently, 9--acetylated bovine submaxillary mucin. These data show for the first time that glycoprotein-associated sialic acid is likely to be a key nutrient source for when growing in a biofilm, and suggest that sialidase inhibitors might be useful adjuncts in periodontal therapy.

Funding
This study was supported by the:
  • Royal Society
  • Dunhill Medical Trust
  • British Oral and Dental Research Trust
  • University of Sheffield Oral Disease cluster studentship
  • Wellcome Trust Value in People Fellowship
  • US Public Health Grant (Award DE014749)
  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052498-0
2011-11-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/157/11/3195.html?itemId=/content/journal/micro/10.1099/mic.0.052498-0&mimeType=html&fmt=ahah

References

  1. Angata T., Varki A. ( 2002). Chemical diversity in the sialic acids and related α-keto acids: an evolutionary perspective. Chem Rev 102:439–470 [View Article][PubMed]
    [Google Scholar]
  2. Aruni W., Vanterpool E., Osbourne D., Roy F., Muthiah A., Dou Y., Fletcher H. M. ( 2011). Sialidase and sialoglycoproteases can modulate virulence in Porphyromonas gingivalis. Infect Immun 79:2779–2791 [View Article][PubMed]
    [Google Scholar]
  3. Banerjee A., Van Sorge N. M., Sheen T. R., Uchiyama S., Mitchell T. J., Doran K. S. ( 2010). Activation of brain endothelium by pneumococcal neuraminidase NanA promotes bacterial internalization. Cell Microbiol 12:1576–1588 [View Article][PubMed]
    [Google Scholar]
  4. Bradshaw D. J., Homer K. A., Marsh P. D., Beighton D. ( 1994). Metabolic cooperation in oral microbial communities during growth on mucin. Microbiology 140:3407–3412 [View Article][PubMed]
    [Google Scholar]
  5. Bradshaw D. J., Marsh P. D., Watson G. K., Allison C. ( 1998). Role of Fusobacterium nucleatum and coaggregation in anaerobe survival in planktonic and biofilm oral microbial communities during aeration. Infect Immun 66:4729–4732[PubMed]
    [Google Scholar]
  6. Byers H. L., Tarelli E., Homer K. A., Beighton D. ( 1999). Sequential deglycosylation and utilization of the N-linked, complex-type glycans of human alpha1-acid glycoprotein mediates growth of Streptococcus oralis. Glycobiology 9:469–479 [View Article][PubMed]
    [Google Scholar]
  7. Byres E., Paton A. W., Paton J. C., Löfling J. C., Smith D. F., Wilce M. C., Talbot U. M., Chong D. C., Yu H. et al. ( 2008). Incorporation of a non-human glycan mediates human susceptibility to a bacterial toxin. Nature 456:648–652 [View Article][PubMed]
    [Google Scholar]
  8. Cointe D., Leroy Y., Chirat F. ( 1998). Determination of the sialylation level and of the ratio α-(2→3)/α-(2→6) sialyl linkages of N-glycans by methylation and GC/MS analysis. Carbohydr Res 311:51–59 [View Article][PubMed]
    [Google Scholar]
  9. Corfield T. ( 1992). Bacterial sialidases–roles in pathogenicity and nutrition. Glycobiology 2:509–521 [View Article][PubMed]
    [Google Scholar]
  10. Dabelsteen E. ( 1996). Cell surface carbohydrates as prognostic markers in human carcinomas. J Pathol 179:358–369 [View Article][PubMed]
    [Google Scholar]
  11. Demuth D. R., Golub E. E., Malamud D. ( 1990). Streptococcal-host interactions. Structural and functional analysis of a Streptococcus sanguis receptor for a human salivary glycoprotein. J Biol Chem 265:7120–7126[PubMed]
    [Google Scholar]
  12. Derrien M., van Passel M. W., van de Bovenkamp J. H., Schipper R. G., de Vos W. M., Dekker J. ( 2010). Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1:254–268 [View Article][PubMed]
    [Google Scholar]
  13. El-Kheshen M. ( 2009). Dentist December 2008:48–50
    [Google Scholar]
  14. Ellen R. P., Fillery E. D., Chan K. H., Grove D. A. ( 1980). Sialidase-enhanced lectin-like mechanism for Actinomyces viscosus and Actinomyces naeslundii hemagglutination. Infect Immun 27:335–343[PubMed]
    [Google Scholar]
  15. Falkler W. A. Jr, Burger B. W. ( 1981). Microbial surface interactions: reduction of the haemagglutination activity of the oral bacterium Fusobacterium nucleatum by absorption with Streptococcus and Bacteroides. Arch Oral Biol 26:1015–1025 [View Article][PubMed]
    [Google Scholar]
  16. Gabriel M. O., Grünheid T., Zentner A. ( 2005). Glycosylation pattern and cell attachment-inhibiting property of human salivary mucins. J Periodontol 76:1175–1181 [View Article][PubMed]
    [Google Scholar]
  17. Honma K., Mishima E., Sharma A. ( 2011). Role of Tannerella forsythia NanH sialidase in epithelial cell attachment. Infect Immun 79:393–401 [View Article][PubMed]
    [Google Scholar]
  18. King S. J., Hippe K. R., Weiser J. N. ( 2006). Deglycosylation of human glycoconjugates by the sequential activities of exoglycosidases expressed by Streptococcus pneumoniae. Mol Microbiol 59:961–974 [View Article][PubMed]
    [Google Scholar]
  19. Kolenbrander P. E., Palmer R. J. ( 2004). Human oral bacterial biofilms. Microbial Biofilms85–117 Ghannoum M. A., O’Toole G. A. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. Krivan H. C., Roberts D. D., Ginsburg V. ( 1988). Many pulmonary pathogenic bacteria bind specifically to the carbohydrate sequence GalNAc beta 1-4Gal found in some glycolipids. Proc Natl Acad Sci U S A 85:6157–6161 [View Article][PubMed]
    [Google Scholar]
  21. Kuroiwa A., Hisatsune A., Isohama Y., Katsuki H. ( 2009). Bacterial neuraminidase increases IL-8 production in lung epithelial cells via NF-κB-dependent pathway. Biochem Biophys Res Commun 379:754–759 [View Article][PubMed]
    [Google Scholar]
  22. Leake J. R., Read D. J. ( 1990). Chitin as a nitrogen source for micorrhizal fungi. Mycol Res 94:993–995 [View Article]
    [Google Scholar]
  23. Martin M. J., Rayner J. C., Gagneux P., Barnwell J. W., Varki A. ( 2005). Evolution of human-chimpanzee differences in malaria susceptibility: relationship to human genetic loss of N-glycolylneuraminic acid. Proc Natl Acad Sci U S A 102:12819–12824 [View Article][PubMed]
    [Google Scholar]
  24. Mizan S., Henk A., Stallings A., Maier M., Lee M. D. ( 2000). Cloning and characterization of sialidases with 2-6′ and 2-3′ sialyl lactose specificity from Pasteurella multocida. J Bacteriol 182:6874–6883 [View Article][PubMed]
    [Google Scholar]
  25. Offner G. D., Troxler R. F. ( 2000). Heterogeneity of high-molecular-weight human salivary mucins. Adv Dent Res 14:69–75 [View Article][PubMed]
    [Google Scholar]
  26. Pham T. K., Roy S., Noirel J., Douglas I., Wright P. C., Stafford G. P. ( 2010). A quantitative proteomic analysis of biofilm adaptation by the periodontal pathogen Tannerella forsythia. Proteomics 10:3130–3141 [View Article][PubMed]
    [Google Scholar]
  27. Pigman W., Gottschalk A. ( 1966). Submaxillary gland glycoproteins. Glycoproteins. Their Composition, Structure, and Function434–445 Amsterdam, The Netherlands: Elsevier;
    [Google Scholar]
  28. Reinholdt J., Tomana M., Mortensen S. B., Kilian M. ( 1990). Molecular aspects of immunoglobulin A1 degradation by oral streptococci. Infect Immun 58:1186–1194[PubMed]
    [Google Scholar]
  29. Roy S., Douglas C. W., Stafford G. P. ( 2010). A novel sialic acid utilization and uptake system in the periodontal pathogen Tannerella forsythia. J Bacteriol 192:2285–2293 [View Article][PubMed]
    [Google Scholar]
  30. Salyers A. A., Pajeau M., McCarthy R. E. ( 1988). Importance of mucopolysaccharides as substrates for Bacteroides thetaiotaomicron growing in intestinal tracts of exgermfree mice. Appl Environ Microbiol 54:1970–1976[PubMed]
    [Google Scholar]
  31. Scannapieco F. A. ( 1994). Saliva-bacterium interactions in oral microbial ecology. Crit Rev Oral Biol Med 5:203–248[PubMed]
    [Google Scholar]
  32. Severi E., Hood D. W., Thomas G. H. ( 2007). Sialic acid utilization by bacterial pathogens. Microbiology 153:2817–2822 [View Article][PubMed]
    [Google Scholar]
  33. Skoza L., Mohos S. ( 1976). Stable thiobarbituric acid chromophore with dimethyl sulphoxide. Application to sialic acid assay in analytical de-O-acetylation. Biochem J 159:457–462[PubMed]
    [Google Scholar]
  34. Socransky S. S., Haffajee A. D., Cugini M. A., Smith C., Kent R. L. Jr ( 1998). Microbial complexes in subgingival plaque. J Clin Periodontol 25:134–144 [View Article][PubMed]
    [Google Scholar]
  35. Soong G., Muir A., Gomez M. I., Waks J., Reddy B., Planet P., Singh P. K., Kaneko Y., Wolfgang M. C. et al. ( 2006). Bacterial neuraminidase facilitates mucosal infection by participating in biofilm production. J Clin Invest 116:2297–2305 [View Article][PubMed]
    [Google Scholar]
  36. Spiro R. G., Bhoyroo V. D. ( 1974). Structure of the O-glycosidically linked carbohydrate units of fetuin. J Biol Chem 249:5704–5717[PubMed]
    [Google Scholar]
  37. Steenbergen S. M., Jirik J. L., Vimr E. R. ( 2009). YjhS (NanS) is required for Escherichia coli to grow on 9-O-acetylated N-acetylneuraminic acid. J Bacteriol 191:7134–7139 [View Article][PubMed]
    [Google Scholar]
  38. Takahashi Y., Konishi K., Cisar J. O., Yoshikawa M. ( 2002). Identification and characterization of hsa, the gene encoding the sialic acid-binding adhesin of Streptococcus gordonii DL1. Infect Immun 70:1209–1218 [View Article][PubMed]
    [Google Scholar]
  39. Takahashi Y., Yajima A., Cisar J. O., Konishi K. ( 2004). Functional analysis of the Streptococcus gordonii DL1 sialic acid-binding adhesin and its essential role in bacterial binding to platelets. Infect Immun 72:3876–3882 [View Article][PubMed]
    [Google Scholar]
  40. Tanner A. C., Izard J. ( 2006). Tannerella forsythia, a periodontal pathogen entering the genomic era. Periodontol 2000 42:88–113 [View Article][PubMed]
    [Google Scholar]
  41. Thompson H., Homer K. A., Rao S., Booth V., Hosie A. H. ( 2009). An orthologue of Bacteroides fragilis NanH is the principal sialidase in Tannerella forsythia. J Bacteriol 191:3623–3628 [View Article][PubMed]
    [Google Scholar]
  42. Tong H. H., Blue L. E., James M. A., DeMaria T. F. ( 2000). Evaluation of the virulence of a Streptococcus pneumoniae neuraminidase-deficient mutant in nasopharyngeal colonization and development of otitis media in the chinchilla model. Infect Immun 68:921–924 [View Article][PubMed]
    [Google Scholar]
  43. Varki A. ( 1997). Sialic acids as ligands in recognition phenomena. FASEB J 11:248–255[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052498-0
Loading
/content/journal/micro/10.1099/mic.0.052498-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error