1887

Abstract

Lysis of the prey’s cell wall is one of the key steps during mycoparasitism. Genome analysis of two mycoparasitic species, and , revealed an expanded arsenal of genes encoding enzymes potentially involved in cell wall hydrolysis. Glycoside hydrolase family 18, which contains all fungal chitinases, is the largest family of carbohydrate-active enzymes in mycoparasitic species. However, in addition to their aggressive functions during mycoparasitism, the roles of chitinases and other cell wall degrading enzymes also include remodelling and recycling of the fungus’s own cell wall. In this review we discuss current knowledge about fungal cell wall degrading enzymes in and how the fungus distinguishes between self- and non-self fungal cell wall degradation. In the past few years, the chitinolytic enzyme machinery of has been used as a model system to address this question. Gene expression profiles of most investigated chitinases indicate an overlap of functions of the respective enzymes and an involvement in both self- and non-self fungal cell wall degradation. Similar sets of enzymes appear to be involved in mycoparasitism, exogenous chitin decomposition and recycling of the fungus’s own cell wall. Thus, we hypothesize that the regulation of self and non-self fungal cell wall degradation is not due to a speciation of individual chitinases. Rather, we hypothesize that it is regulated by substrate accessibility due to cell wall protection in healthy hyphae vs deprotection during mycoparasitic attack, hyphal ageing and autolysis.

  • This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.052613-0
2012-01-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/1/26.html?itemId=/content/journal/micro/10.1099/mic.0.052613-0&mimeType=html&fmt=ahah

References

  1. Baek J. M., Howell C. R., Kenerley C. M. ( 1999). The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani . Curr Genet 35:41–50 [View Article][PubMed]
    [Google Scholar]
  2. Benítez T., Villa T. G., Acha I. G. ( 1975). Chemical and structural differences in mycelial and regeneration walls of trichoderma viride . Arch Microbiol 105:277–282 [View Article][PubMed]
    [Google Scholar]
  3. Benítez T., Villa T. G., García Acha I. ( 1976). Some chemical and structural features of the conidial wall of Trichoderma viride . Can J Microbiol 22:318–321 [View Article][PubMed]
    [Google Scholar]
  4. Benítez T., Rincón A. M., Limón M. C., Codón A. C. ( 2004). Biocontrol mechanisms of Trichoderma strains. Int Microbiol 7:249–260[PubMed]
    [Google Scholar]
  5. Bull A. T. ( 1970). Inhibition of polysaccharases by melanin: enzyme inhibition in relation to mycolysis. Arch Biochem Biophys 137:345–356 [View Article][PubMed]
    [Google Scholar]
  6. Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B. ( 2009). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37:Database issueD233–D238 [View Article][PubMed]
    [Google Scholar]
  7. Carsolio C., Gutiérrez A., Jiménez B., Van Montagu M., Herrera-Estrella A. ( 1994). Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. Proc Natl Acad Sci U S A 91:10903–10907 [View Article][PubMed]
    [Google Scholar]
  8. Carsolio C., Benhamou N., Haran S., Cortés C., Gutiérrez A., Chet I., Herrera-Estrella A. ( 1999). Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. Appl Environ Microbiol 65:929–935[PubMed]
    [Google Scholar]
  9. Catalano V., Vergara M., Hauzenberger J. R., Seiboth B., Sarrocco S., Vannacci G., Kubicek C. P., Seidl-Seiboth V. ( 2011). Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. Curr Genet 57:13–23 [View Article][PubMed]
    [Google Scholar]
  10. de Jonge R., Thomma B. P. ( 2009). Fungal LysM effectors: extinguishers of host immunity?. Trends Microbiol 17:151–157 [View Article][PubMed]
    [Google Scholar]
  11. de Jonge R., van Esse H. P., Kombrink A., Shinya T., Desaki Y., Bours R., van der Krol S., Shibuya N., Joosten M. H., Thomma B. P. ( 2010). Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. Science 329:953–955 [View Article][PubMed]
    [Google Scholar]
  12. Deacon J. ( 2006). Fungal Biology Oxford: Blackwell Publishing;
    [Google Scholar]
  13. Djonović S., Pozo M. J., Kenerley C. M. ( 2006). Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum . Appl Environ Microbiol 72:7661–7670 [View Article][PubMed]
    [Google Scholar]
  14. Eijsink V. G., Vaaje-Kolstad G., Vårum K. M., Horn S. J. ( 2008). Towards new enzymes for biofuels: lessons from chitinase research. Trends Biotechnol 26:228–235 [View Article][PubMed]
    [Google Scholar]
  15. Geremia R. A., Goldman G. H., Jacobs D., Ardiles W., Vila S. B., Van Montagu M., Herrera-Estrella A. ( 1993). Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum . Mol Microbiol 8:603–613 [View Article][PubMed]
    [Google Scholar]
  16. Gruber S., Kubicek C. P., Seidl-Seiboth V. ( 2011a). Differential regulation of orthologous chitinase genes in mycoparasitic trichoderma species. Appl Environ Microbiol 77:7217–7226 [View Article][PubMed]
    [Google Scholar]
  17. Gruber S., Vaaje-Kolstad G., Matarese F., López-Mondéjar R., Kubicek C. P., Seidl-Seiboth V. ( 2011b). Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride . Glycobiology 21:122–133 [View Article][PubMed]
    [Google Scholar]
  18. Henrissat B. ( 1991). A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280:309–316[PubMed]
    [Google Scholar]
  19. Jaques A. K., Fukamizo T., Hall D., Barton R. C., Escott G. M., Parkinson T., Hitchcock C. A., Adams D. J. ( 2003). Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. Microbiology 149:2931–2939 [View Article][PubMed]
    [Google Scholar]
  20. Karlsson M., Stenlid J. ( 2008). Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. Evol Bioinform Online 4:47–60[PubMed]
    [Google Scholar]
  21. Knogge W., Scheel D. ( 2006). LysM receptors recognize friend and foe. Proc Natl Acad Sci U S A 103:10829–10830 [View Article][PubMed]
    [Google Scholar]
  22. Kubicek C. P., Baker S., Gamauf C., Kenerley C. M., Druzhinina I. S. ( 2008). Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea . BMC Evol Biol 8:4 [View Article][PubMed]
    [Google Scholar]
  23. Kubicek C. P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D. A., Druzhinina I. S., Thon M., Zeilinger S., Casas-Flores S., Horwitz B. A. & other authors ( 2011). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma . Genome Biol 12:R40 [View Article][PubMed]
    [Google Scholar]
  24. Latgé J. P. ( 2007). The cell wall: a carbohydrate armour for the fungal cell. Mol Microbiol 66:279–290 [View Article][PubMed]
    [Google Scholar]
  25. Limón M. C., Pintor-Toro J. A., Benítez T. ( 1999). Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. Phytopathology 89:254–261 [View Article][PubMed]
    [Google Scholar]
  26. Limón M. C., Margolles-Clark E., Benítez T., Penttilä M. ( 2001). Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum . FEMS Microbiol Lett 198:57–63 [View Article][PubMed]
    [Google Scholar]
  27. Limón M. C., Chacón M. R., Mejías R., Delgado-Jarana J., Rincón A. M., Codón A. C., Benítez T. ( 2004). Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. Appl Microbiol Biotechnol 64:675–685 [View Article][PubMed]
    [Google Scholar]
  28. López-Mondéjar R., Catalano V., Kubicek C. P., Seidl V. ( 2009). The beta-N-acetylglucosaminidases NAG1 and NAG2 are essential for growth of Trichoderma atroviride on chitin. FEBS J 276:5137–5148 [View Article][PubMed]
    [Google Scholar]
  29. Mach R. L., Peterbauer C. K., Payer K., Jaksits S., Woo S. L., Zeilinger S., Kullnig C. M., Lorito M., Kubicek C. P. ( 1999). Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. Appl Environ Microbiol 65:1858–1863[PubMed]
    [Google Scholar]
  30. Peterbauer C. K., Lorito M., Hayes C. K., Harman G. E., Kubicek C. P. ( 1996). Molecular cloning and expression of the nag1 gene (N-acetyl-β-d-glucosaminidase-encoding gene) from Trichoderma harzianum P1. Curr Genet 30:325–331 [View Article][PubMed]
    [Google Scholar]
  31. Ramot O., Viterbo A., Friesem D., Oppenheim A., Chet I. ( 2004). Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine. Curr Genet 45:205–213 [View Article][PubMed]
    [Google Scholar]
  32. Rosado I. V., Rey M., Codón A. C., Govantes J., Moreno-Mateos M. A., Benítez T. ( 2007). QID74 cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. Fungal Genet Biol 44:950–964 [View Article][PubMed]
    [Google Scholar]
  33. Seidl V. ( 2008). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. Fungal Biol Rev 22:36–42 [View Article]
    [Google Scholar]
  34. Seidl V., Huemer B., Seiboth B., Kubicek C. P. ( 2005). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939 [View Article][PubMed]
    [Google Scholar]
  35. Seidl V., Song L., Lindquist E., Gruber S., Koptchinskiy A., Zeilinger S., Schmoll M., Martínez P., Sun J. & other authors ( 2009). Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. BMC Genomics 10:567 [View Article][PubMed]
    [Google Scholar]
  36. Seidl-Seiboth V., Gruber S., Sezerman U., Schwecke T., Albayrak A., Neuhof T., von Döhren H., Baker S. E., Kubicek C. P. ( 2011). Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. J Mol Evol 72:339–351 [View Article][PubMed]
    [Google Scholar]
  37. Shin K. S., Kwon N. J., Kim Y. H., Park H. S., Kwon G. S., Yu J. H. ( 2009). Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans . Eukaryot Cell 8:738–746 [View Article][PubMed]
    [Google Scholar]
  38. Stals I., Samyn B., Sergeant K., White T., Hoorelbeke K., Coorevits A., Devreese B., Claeyssens M., Piens K. ( 2010). Identification of a gene coding for a deglycosylating enzyme in Hypocrea jecorina . FEMS Microbiol Lett 303:9–17 [View Article][PubMed]
    [Google Scholar]
  39. Suárez M. B., Vizcaíno J. A., Llobell A., Monte E. ( 2007). Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. Curr Genet 51:331–342 [View Article][PubMed]
    [Google Scholar]
  40. van den Burg H. A., Harrison S. J., Joosten M. H., Vervoort J., de Wit P. J. ( 2006). Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. Mol Plant Microbe Interact 19:1420–1430 [View Article][PubMed]
    [Google Scholar]
  41. Viterbo A., Haran S., Friesem D., Ramot O., Chet I. ( 2001). Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. FEMS Microbiol Lett 200:169–174 [View Article][PubMed]
    [Google Scholar]
  42. White S., McIntyre M., Berry D. R., McNeil B. ( 2002). The autolysis of industrial filamentous fungi. Crit Rev Biotechnol 22:1–14 [View Article][PubMed]
    [Google Scholar]
  43. Woo S. L., Donzelli B., Scala F., Mach R. L., Harman G. E., Kubicek C. P., Del Sorbo G., Lorito M. ( 1999). Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. Mol Plant Microbe Interact 12:419–429 [View Article]
    [Google Scholar]
  44. Yamazaki H., Yamazaki D., Takaya N., Takagi M., Ohta A., Horiuchi H. ( 2007). A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans . Curr Genet 51:89–98 [View Article][PubMed]
    [Google Scholar]
  45. Zeilinger S., Galhaup C., Payer K., Woo S. L., Mach R. L., Fekete C., Lorito M., Kubicek C. P. ( 1999). Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. Fungal Genet Biol 26:131–140 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.052613-0
Loading
/content/journal/micro/10.1099/mic.0.052613-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error