
f Self versus non-self: fungal cell wall degradation in Trichoderma
- Authors: Sabine Gruber1 , Verena Seidl-Seiboth1
-
- VIEW AFFILIATIONS
-
1 Research Area Gene Technology and Applied Biochemistry, Institute of Chemical Engineering, Vienna University of Technology, Gumpendorfer Strasse 1a, 1060 Vienna, Austria
- Correspondence Verena Seidl-Seiboth [email protected]
- First Published Online: 01 January 2012, Microbiology 158: 26-34, doi: 10.1099/mic.0.052613-0
- Subject: Trichoderma - from Basic Biology to Biotechnology
- Cover date:




Self versus non-self: fungal cell wall degradation in Trichoderma, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/158/1/26_mic052613-1.gif
-
Lysis of the prey’s cell wall is one of the key steps during mycoparasitism. Genome analysis of two mycoparasitic Trichoderma species, T. atroviride and T. virens, revealed an expanded arsenal of genes encoding enzymes potentially involved in cell wall hydrolysis. Glycoside hydrolase family 18, which contains all fungal chitinases, is the largest family of carbohydrate-active enzymes in mycoparasitic Trichoderma species. However, in addition to their aggressive functions during mycoparasitism, the roles of chitinases and other cell wall degrading enzymes also include remodelling and recycling of the fungus’s own cell wall. In this review we discuss current knowledge about fungal cell wall degrading enzymes in Trichoderma and how the fungus distinguishes between self- and non-self fungal cell wall degradation. In the past few years, the chitinolytic enzyme machinery of Trichoderma has been used as a model system to address this question. Gene expression profiles of most investigated chitinases indicate an overlap of functions of the respective enzymes and an involvement in both self- and non-self fungal cell wall degradation. Similar sets of enzymes appear to be involved in mycoparasitism, exogenous chitin decomposition and recycling of the fungus’s own cell wall. Thus, we hypothesize that the regulation of self and non-self fungal cell wall degradation is not due to a speciation of individual chitinases. Rather, we hypothesize that it is regulated by substrate accessibility due to cell wall protection in healthy hyphae vs deprotection during mycoparasitic attack, hyphal ageing and autolysis.
-
Abbreviations: CAZyme carbohydrate-active enzyme CBM carbohydrate-binding module CE carbohydrate esterase GH glycoside hydrolase GT glycosyltransferase PL polysaccharide lyase
-
Baek J. M., Howell C. R., Kenerley C. M.. ( 1999;). The role of an extracellular chitinase from Trichoderma virens Gv29-8 in the biocontrol of Rhizoctonia solani. . Curr Genet 35:, 41––50. [CrossRef][PubMed]
-
Benítez T., Villa T. G., Acha I. G.. ( 1975;). Chemical and structural differences in mycelial and regeneration walls of trichoderma viride. . Arch Microbiol 105:, 277––282. [CrossRef][PubMed]
-
Benítez T., Villa T. G., García Acha I.. ( 1976;). Some chemical and structural features of the conidial wall of Trichoderma viride. . Can J Microbiol 22:, 318––321. [CrossRef][PubMed]
-
Benítez T., Rincón A. M., Limón M. C., Codón A. C.. ( 2004;). Biocontrol mechanisms of Trichoderma strains. . Int Microbiol 7:, 249––260.[PubMed]
-
Bull A. T.. ( 1970;). Inhibition of polysaccharases by melanin: enzyme inhibition in relation to mycolysis. . Arch Biochem Biophys 137:, 345––356. [CrossRef][PubMed]
-
Cantarel B. L., Coutinho P. M., Rancurel C., Bernard T., Lombard V., Henrissat B.. ( 2009;). The Carbohydrate-Active EnZymes database (CAZy): an expert resource for glycogenomics. . Nucleic Acids Res 37: (Database issue), D233––D238. [CrossRef][PubMed]
-
Carsolio C., Gutiérrez A., Jiménez B., Van Montagu M., Herrera-Estrella A.. ( 1994;). Characterization of ech-42, a Trichoderma harzianum endochitinase gene expressed during mycoparasitism. . Proc Natl Acad Sci U S A 91:, 10903––10907. [CrossRef][PubMed]
-
Carsolio C., Benhamou N., Haran S., Cortés C., Gutiérrez A., Chet I., Herrera-Estrella A.. ( 1999;). Role of the Trichoderma harzianum endochitinase gene, ech42, in mycoparasitism. . Appl Environ Microbiol 65:, 929––935.[PubMed]
-
Catalano V., Vergara M., Hauzenberger J. R., Seiboth B., Sarrocco S., Vannacci G., Kubicek C. P., Seidl-Seiboth V.. ( 2011;). Use of a non-homologous end-joining-deficient strain (delta-ku70) of the biocontrol fungus Trichoderma virens to investigate the function of the laccase gene lcc1 in sclerotia degradation. . Curr Genet 57:, 13––23. [CrossRef][PubMed]
-
de Jonge R., Thomma B. P.. ( 2009;). Fungal LysM effectors: extinguishers of host immunity?. Trends Microbiol 17:, 151––157. [CrossRef][PubMed]
-
de Jonge R., van Esse H. P., Kombrink A., Shinya T., Desaki Y., Bours R., van der Krol S., Shibuya N., Joosten M. H., Thomma B. P.. ( 2010;). Conserved fungal LysM effector Ecp6 prevents chitin-triggered immunity in plants. . Science 329:, 953––955. [CrossRef][PubMed]
-
Deacon J.. ( 2006;). Fungal Biology. Oxford:: Blackwell Publishing;.
-
Djonović S., Pozo M. J., Kenerley C. M.. ( 2006;). Tvbgn3, a beta-1,6-glucanase from the biocontrol fungus Trichoderma virens, is involved in mycoparasitism and control of Pythium ultimum. . Appl Environ Microbiol 72:, 7661––7670. [CrossRef][PubMed]
-
Eijsink V. G., Vaaje-Kolstad G., Vårum K. M., Horn S. J.. ( 2008;). Towards new enzymes for biofuels: lessons from chitinase research. . Trends Biotechnol 26:, 228––235. [CrossRef][PubMed]
-
Geremia R. A., Goldman G. H., Jacobs D., Ardiles W., Vila S. B., Van Montagu M., Herrera-Estrella A.. ( 1993;). Molecular characterization of the proteinase-encoding gene, prb1, related to mycoparasitism by Trichoderma harzianum. . Mol Microbiol 8:, 603––613. [CrossRef][PubMed]
-
Gruber S., Kubicek C. P., Seidl-Seiboth V.. ( 2011a;). Differential regulation of orthologous chitinase genes in mycoparasitic trichoderma species. . Appl Environ Microbiol 77:, 7217––7226. [CrossRef][PubMed]
-
Gruber S., Vaaje-Kolstad G., Matarese F., López-Mondéjar R., Kubicek C. P., Seidl-Seiboth V.. ( 2011b;). Analysis of subgroup C of fungal chitinases containing chitin-binding and LysM modules in the mycoparasite Trichoderma atroviride. . Glycobiology 21:, 122––133. [CrossRef][PubMed]
-
Henrissat B.. ( 1991;). A classification of glycosyl hydrolases based on amino acid sequence similarities. . Biochem J 280:, 309––316.[PubMed]
-
Jaques A. K., Fukamizo T., Hall D., Barton R. C., Escott G. M., Parkinson T., Hitchcock C. A., Adams D. J.. ( 2003;). Disruption of the gene encoding the ChiB1 chitinase of Aspergillus fumigatus and characterization of a recombinant gene product. . Microbiology 149:, 2931––2939. [CrossRef][PubMed]
-
Karlsson M., Stenlid J.. ( 2008;). Comparative evolutionary histories of the fungal chitinase gene family reveal non-random size expansions and contractions due to adaptive natural selection. . Evol Bioinform Online 4:, 47––60.[PubMed]
-
Knogge W., Scheel D.. ( 2006;). LysM receptors recognize friend and foe. . Proc Natl Acad Sci U S A 103:, 10829––10830. [CrossRef][PubMed]
-
Kubicek C. P., Baker S., Gamauf C., Kenerley C. M., Druzhinina I. S.. ( 2008;). Purifying selection and birth-and-death evolution in the class II hydrophobin gene families of the ascomycete Trichoderma/Hypocrea. . BMC Evol Biol 8:, 4. [CrossRef][PubMed]
-
Kubicek C. P., Herrera-Estrella A., Seidl-Seiboth V., Martinez D. A., Druzhinina I. S., Thon M., Zeilinger S., Casas-Flores S., Horwitz B. A.. & other authors ( 2011;). Comparative genome sequence analysis underscores mycoparasitism as the ancestral life style of Trichoderma. . Genome Biol 12:, R40. [CrossRef][PubMed]
-
Latgé J. P.. ( 2007;). The cell wall: a carbohydrate armour for the fungal cell. . Mol Microbiol 66:, 279––290. [CrossRef][PubMed]
-
Limón M. C., Pintor-Toro J. A., Benítez T.. ( 1999;). Increased antifungal activity of Trichoderma harzianum transformants that overexpress a 33-kDa chitinase. . Phytopathology 89:, 254––261. [CrossRef][PubMed]
-
Limón M. C., Margolles-Clark E., Benítez T., Penttilä M.. ( 2001;). Addition of substrate-binding domains increases substrate-binding capacity and specific activity of a chitinase from Trichoderma harzianum. . FEMS Microbiol Lett 198:, 57––63. [CrossRef][PubMed]
-
Limón M. C., Chacón M. R., Mejías R., Delgado-Jarana J., Rincón A. M., Codón A. C., Benítez T.. ( 2004;). Increased antifungal and chitinase specific activities of Trichoderma harzianum CECT 2413 by addition of a cellulose binding domain. . Appl Microbiol Biotechnol 64:, 675––685. [CrossRef][PubMed]
-
López-Mondéjar R., Catalano V., Kubicek C. P., Seidl V.. ( 2009;). The beta-N-acetylglucosaminidases NAG1 and NAG2 are essential for growth of Trichoderma atroviride on chitin. . FEBS J 276:, 5137––5148. [CrossRef][PubMed]
-
Mach R. L., Peterbauer C. K., Payer K., Jaksits S., Woo S. L., Zeilinger S., Kullnig C. M., Lorito M., Kubicek C. P.. ( 1999;). Expression of two major chitinase genes of Trichoderma atroviride (T. harzianum P1) is triggered by different regulatory signals. . Appl Environ Microbiol 65:, 1858––1863.[PubMed]
-
Peterbauer C. K., Lorito M., Hayes C. K., Harman G. E., Kubicek C. P.. ( 1996;). Molecular cloning and expression of the nag1 gene (N-acetyl-β-d-glucosaminidase-encoding gene) from Trichoderma harzianum P1. . Curr Genet 30:, 325––331. [CrossRef][PubMed]
-
Ramot O., Viterbo A., Friesem D., Oppenheim A., Chet I.. ( 2004;). Regulation of two homodimer hexosaminidases in the mycoparasitic fungus Trichoderma asperellum by glucosamine. . Curr Genet 45:, 205––213. [CrossRef][PubMed]
-
Rosado I. V., Rey M., Codón A. C., Govantes J., Moreno-Mateos M. A., Benítez T.. ( 2007;). QID74 cell wall protein of Trichoderma harzianum is involved in cell protection and adherence to hydrophobic surfaces. . Fungal Genet Biol 44:, 950––964. [CrossRef][PubMed]
-
Seidl V.. ( 2008;). Chitinases of filamentous fungi: a large group of diverse proteins with multiple physiological functions. . Fungal Biol Rev 22:, 36––42. [CrossRef]
-
Seidl V., Huemer B., Seiboth B., Kubicek C. P.. ( 2005;). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. . FEBS J 272:, 5923––5939. [CrossRef][PubMed]
-
Seidl V., Song L., Lindquist E., Gruber S., Koptchinskiy A., Zeilinger S., Schmoll M., Martínez P., Sun J.. & other authors ( 2009;). Transcriptomic response of the mycoparasitic fungus Trichoderma atroviride to the presence of a fungal prey. . BMC Genomics 10:, 567. [CrossRef][PubMed]
-
Seidl-Seiboth V., Gruber S., Sezerman U., Schwecke T., Albayrak A., Neuhof T., von Döhren H., Baker S. E., Kubicek C. P.. ( 2011;). Novel hydrophobins from Trichoderma define a new hydrophobin subclass: protein properties, evolution, regulation and processing. . J Mol Evol 72:, 339––351. [CrossRef][PubMed]
-
Shin K. S., Kwon N. J., Kim Y. H., Park H. S., Kwon G. S., Yu J. H.. ( 2009;). Differential roles of the ChiB chitinase in autolysis and cell death of Aspergillus nidulans. . Eukaryot Cell 8:, 738––746. [CrossRef][PubMed]
-
Stals I., Samyn B., Sergeant K., White T., Hoorelbeke K., Coorevits A., Devreese B., Claeyssens M., Piens K.. ( 2010;). Identification of a gene coding for a deglycosylating enzyme in Hypocrea jecorina. . FEMS Microbiol Lett 303:, 9––17. [CrossRef][PubMed]
-
Suárez M. B., Vizcaíno J. A., Llobell A., Monte E.. ( 2007;). Characterization of genes encoding novel peptidases in the biocontrol fungus Trichoderma harzianum CECT 2413 using the TrichoEST functional genomics approach. . Curr Genet 51:, 331––342. [CrossRef][PubMed]
-
van den Burg H. A., Harrison S. J., Joosten M. H., Vervoort J., de Wit P. J.. ( 2006;). Cladosporium fulvum Avr4 protects fungal cell walls against hydrolysis by plant chitinases accumulating during infection. . Mol Plant Microbe Interact 19:, 1420––1430. [CrossRef][PubMed]
-
Viterbo A., Haran S., Friesem D., Ramot O., Chet I.. ( 2001;). Antifungal activity of a novel endochitinase gene (chit36) from Trichoderma harzianum Rifai TM. . FEMS Microbiol Lett 200:, 169––174. [CrossRef][PubMed]
-
White S., McIntyre M., Berry D. R., McNeil B.. ( 2002;). The autolysis of industrial filamentous fungi. . Crit Rev Biotechnol 22:, 1––14. [CrossRef][PubMed]
-
Woo S. L., Donzelli B., Scala F., Mach R. L., Harman G. E., Kubicek C. P., Del Sorbo G., Lorito M.. ( 1999;). Disruption of the ech42 (endochitinase-encoding) gene affects biocontrol activity in Trichoderma harzianum P1. . Mol Plant Microbe Interact 12:, 419––429. [CrossRef]
-
Yamazaki H., Yamazaki D., Takaya N., Takagi M., Ohta A., Horiuchi H.. ( 2007;). A chitinase gene, chiB, involved in the autolytic process of Aspergillus nidulans. . Curr Genet 51:, 89––98. [CrossRef][PubMed]
-
Zeilinger S., Galhaup C., Payer K., Woo S. L., Mach R. L., Fekete C., Lorito M., Kubicek C. P.. ( 1999;). Chitinase gene expression during mycoparasitic interaction of Trichoderma harzianum with its host. . Fungal Genet Biol 26:, 131––140. [CrossRef][PubMed]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.052613-0dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.052613-0dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....