1887

Abstract

R-type and F-type pyocins are high-molecular-mass bacteriocins produced by that resemble bacteriophage tails. They contain no head structures and no DNA, and are used as defence systems. In this report, we show that SF4c, a strain isolated from the wheat rhizosphere, produces a high-molecular-mass bacteriocin which inhibits the growth of closely related bacteria. A mutant deficient in production of this antimicrobial compound was obtained by transposon mutagenesis. Sequence analysis revealed that the transposon had disrupted a gene that we have named , since it is homologous to that encoding phage tape-measure protein in Pf0-1, a gene belonging to a prophage similar to phage-like pyocin from PAO1. In addition, we have identified genes from the SF4c pyocin cluster that encode a lytic system and regulatory genes. We constructed a non-polar mutant of SF4c. Heterologous complementation of this mutation restored the production of bacteriocin. Real-time PCR was used to analyse the expression of pyocin under different stress conditions. Bacteriocin was upregulated by mitomycin C, UV light and hydrogen peroxide, and was downregulated by saline stress. This report constitutes, to our knowledge, the first genetic characterization of a phage tail-like bacteriocin in a rhizosphere strain.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.056002-0
2012-06-01
2024-04-24
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/6/1493.html?itemId=/content/journal/micro/10.1099/mic.0.056002-0&mimeType=html&fmt=ahah

References

  1. Alippi A. M., Dal Bo E., Ronco L. B., López M. V., López A. C., Aguilar O. M. ( 2003). Pseudomonas populations causing pith necrosis of tomato and pepper in Argentina are highly diverse. Plant Pathol 52:287–302 [View Article]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Aymerich T., Artigas M. G., Garriga M., Monfort J. M., Hugas M. ( 2000). Effect of sausage ingredients and additives on the production of enterocin A and B by Enterococcus faecium CTC492. Optimization of in vitro production and anti-listerial effect in dry fermented sausages. J Appl Microbiol 88:686–694 [View Article][PubMed]
    [Google Scholar]
  4. Blázquez J., Gómez-Gómez J. M., Oliver A., Juan C., Kapur V., Martín S. ( 2006). PBP3 inhibition elicits adaptive responses in Pseudomonas aeruginosa . Mol Microbiol 62:84–99 [View Article][PubMed]
    [Google Scholar]
  5. Brazas M. D., Hancock R. E. ( 2005). Ciprofloxacin induction of a susceptibility determinant in Pseudomonas aeruginosa . Antimicrob Agents Chemother 49:3222–3227 [View Article][PubMed]
    [Google Scholar]
  6. Caetano-Anollés G. ( 1993). Amplifying DNA with arbitrary oligonucleotide primers. PCR Methods Appl 3:85–94[PubMed] [CrossRef]
    [Google Scholar]
  7. Chang W., Small D. A., Toghrol F., Bentley W. E. ( 2005). Microarray analysis of Pseudomonas aeruginosa reveals induction of pyocin genes in response to hydrogen peroxide. BMC Genomics 6:115–129 [View Article][PubMed]
    [Google Scholar]
  8. Compeau G., Al-Achi B. J., Platsouka E., Levy S. B. ( 1988). Survival of rifampin-resistant mutants of Pseudomonas fluorescens and Pseudomonas putida in soil systems. Appl Environ Microbiol 54:2432–2438[PubMed]
    [Google Scholar]
  9. Dennis J. J., Zylstra G. J. ( 1998). Improved antibiotic-resistance cassettes through restriction site elimination using Pfu DNA polymerase PCR. Biotechniques 25:772–774[PubMed]
    [Google Scholar]
  10. Dombrecht B., Vanderleyden J., Michiels J. ( 2001). Stable RK2-derived cloning vectors for the analysis of gene expression and gene function in Gram-negative bacteria. Mol Plant Microbe Interact 14:426–430 [View Article][PubMed]
    [Google Scholar]
  11. Finan T. M., Kunkel B., De Vos G. F., Signer E. R. ( 1986). Second symbiotic megaplasmid in Rhizobium meliloti carrying exopolysaccharide and thiamine synthesis genes. J Bacteriol 167:66–72[PubMed]
    [Google Scholar]
  12. Fischer S. E., Fischer S. I., Magris S., Mori G. ( 2007). Isolation and characterization of bacteria from the rhizosphere of wheat. World J Microbiol Biotechnol 23:895–903 [View Article]
    [Google Scholar]
  13. Fischer S. E., Jofré E. C., Cordero P. V., Gutiérrez Mañero F. J., Mori G. B. ( 2010). Survival of native Pseudomonas in soil and wheat rhizosphere and antagonist activity against plant pathogenic fungi. Antonie van Leeuwenhoek 97:241–251 [View Article][PubMed]
    [Google Scholar]
  14. Franklin F. C. H., Bagdasarian M., Bagdasarian M. M., Timmis K. N. ( 1981). Molecular and functional analysis of the TOL plasmid pWWO from Pseudomonas putida and cloning of genes for the entire regulated aromatic ring meta cleavage pathway. Proc Natl Acad Sci U S A 78:7458–7462 [View Article][PubMed]
    [Google Scholar]
  15. Geels F. P., Schippers B. ( 1983). Selection of antagonistic fluorescent Pseudomonas spp. and their root colonization and persistence following treatment of seed potatoes. Phytopathol Z 108:193–206 [View Article]
    [Google Scholar]
  16. Hanahan D. ( 1983). Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [View Article][PubMed]
    [Google Scholar]
  17. Hancock R. E. W., Chapple D. S. ( 1999). Peptide antibiotics. Antimicrob Agents Chemother 43:1317–1323[PubMed]
    [Google Scholar]
  18. Heo Y. J., Chung I. Y., Choi K. B., Cho Y. H. ( 2007). R-type pyocin is required for competitive growth advantage between Pseudomonas aeruginosa strains. J Microbiol Biotechnol 17:180–185[PubMed]
    [Google Scholar]
  19. Herrero M., de Lorenzo V., Timmis K. N. ( 1990). Transposon vectors containing non-antibiotic resistance selection markers for cloning and stable chromosomal insertion of foreign genes in Gram-negative bacteria. J Bacteriol 172:6557–6567[PubMed]
    [Google Scholar]
  20. Holtsmark I., Eijsink V. G. H., Brurberg M. B. ( 2008). Bacteriocins from plant pathogenic bacteria. FEMS Microbiol Lett 280:1–7 [View Article][PubMed]
    [Google Scholar]
  21. Huang H. C., Schuurink R., Denny T. P., Atkinson M. M., Baker C. J., Yucel I., Hutcheson S. W., Collmer A. ( 1988). Molecular cloning of a Pseudomonas syringae pv. syringae gene cluster that enables Pseudomonas fluorescens to elicit the hypersensitive response in tobacco plants. J Bacteriol 170:4748–4756[PubMed]
    [Google Scholar]
  22. Hurtado A., Reguant C., Bordons A., Rozès N. ( 2011). Expression of Lactobacillus pentosus B96 bacteriocin genes under saline stress. Food Microbiol 28:1339–1344 [View Article][PubMed]
    [Google Scholar]
  23. Jofré E., Fischer S., Rivarola V., Balegno H., Mori G. ( 1998). Saline stress affects the attachment of Azospirillum brasilense Cd to maize and wheat roots. Can J Microbiol 44:416–422 [CrossRef]
    [Google Scholar]
  24. Kaniga K., Delor I., Cornelis G. R. ( 1991). A wide-host-range suicide vector for improving reverse genetics in Gram-negative bacteria: inactivation of the blaA gene of Yersinia enterocolitica . Gene 109:137–141 [View Article][PubMed]
    [Google Scholar]
  25. Latour X., Corberand T., Laguerre G., Allard F., Lemanceau P. ( 1996). The composition of fluorescent pseudomonad populations associated with roots is influenced by plant and soil type. Appl Environ Microbiol 62:2449–2456[PubMed]
    [Google Scholar]
  26. Lavermicocca P., Lonigro S. L., Valerio F., Evidente A., Visconti A. ( 2002). Reduction of olive knot disease by a bacteriocin from Pseudomonas syringae pv. ciccaronei . Appl Environ Microbiol 68:1403–1407 [View Article][PubMed]
    [Google Scholar]
  27. Leroy F., de Vuyst L. ( 1999). The presence of salt and a curing agent reduces bacteriocin production by Lactobacillus sakei CTC 494, a potential starter culture for sausage fermentation. Appl Environ Microbiol 65:5350–5356[PubMed]
    [Google Scholar]
  28. Lisboa M. P., Bonatto D., Bizani D., Henriques J. A. P., Brandelli A. ( 2006). Characterization of a bacteriocin-like substance produced by Bacillus amyloliquefaciens isolated from the Brazilian Atlantic forest. Int Microbiol 9:111–118[PubMed]
    [Google Scholar]
  29. Matsui H., Sano Y., Ishihara H., Shinomiya T. ( 1993). Regulation of pyocin genes in Pseudomonas aeruginosa by positive (prtN) and negative (prtR) regulatory genes. J Bacteriol 175:1257–1263[PubMed]
    [Google Scholar]
  30. Mavrodi D. V., Loper J. E., Paulsen I. T., Thomashow L. S. ( 2009). Mobile genetic elements in the genome of the beneficial rhizobacterium Pseudomonas fluorescens Pf-5. BMC Microbiol 9:8–26 [View Article][PubMed]
    [Google Scholar]
  31. Michel-Briand Y., Baysse C. ( 2002). The pyocins of Pseudomonas aeruginosa . Biochimie 84:499–510 [View Article][PubMed]
    [Google Scholar]
  32. Nakayama K., Takashima K., Ishihara H., Shinomiya T., Kageyama M., Kanaya S., Ohnishi M., Murata T., Mori H., Hayashi T. ( 2000). The R-type pyocin of Pseudomonas aeruginosa is related to P2 phage, and the F-type is related to lambda phage. Mol Microbiol 38:213–231 [View Article][PubMed]
    [Google Scholar]
  33. Parret A. H. A., De Mot R. ( 2002). Bacteria killing their own kind: novel bacteriocins of Pseudomonas and other γ-proteobacteria. Trends Microbiol 10:107–112 [View Article][PubMed]
    [Google Scholar]
  34. Parret A. H., Schoofs G., Proost P., De Mot R. ( 2003). Plant lectin-like bacteriocin from a rhizosphere-colonizing Pseudomonas isolate. J Bacteriol 185:897–908 [View Article][PubMed]
    [Google Scholar]
  35. Parret A. H., Temmerman K., De Mot R. ( 2005). Novel lectin-like bacteriocins of biocontrol strain Pseudomonas fluorescens Pf-5. Appl Environ Microbiol 71:5197–5207 [View Article][PubMed]
    [Google Scholar]
  36. Pedersen M., Østergaard S., Bresciani J., Vogensen F. K. ( 2000). Mutational analysis of two structural genes of the temperate lactococcal bacteriophage TP901-1 involved in tail length determination and baseplate assembly. Virology 276:315–328 [View Article][PubMed]
    [Google Scholar]
  37. Pfaffl M. W. ( 2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45 [View Article][PubMed]
    [Google Scholar]
  38. Rossbach S., Kukuk M. L., Wilson T. L., Feng S. F., Pearson M. M., Fisher M. A. ( 2000). Cadmium-regulated gene fusions in Pseudomonas fluorescens . Environ Microbiol 2:373–382 [View Article][PubMed]
    [Google Scholar]
  39. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  40. Scarlett C. M., Fletcher J. T., Roberts P., Lelliott R. A. ( 1978). Tomato pith necrosis caused by Pseudomonas corrugata n. sp.. Ann Appl Biol 88:105–114 [View Article]
    [Google Scholar]
  41. Scholl D., Martin D. W. Jr ( 2008). Antibacterial efficacy of R-type pyocins towards Pseudomonas aeruginosa in a murine peritonitis model. Antimicrob Agents Chemother 52:1647–1652 [View Article][PubMed]
    [Google Scholar]
  42. Simon R., Priefer U., Pühler A. ( 1983). A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram-negative bacteria. Nat Biotechnol 1:784–791 [View Article]
    [Google Scholar]
  43. Simon R., Quandt J., Klipp W. ( 1989). New derivatives of transposon Tn5 suitable for mobilization of replicons, generation of operon fusions and induction of genes in Gram-negative bacteria. Gene 80:161–169 [View Article][PubMed]
    [Google Scholar]
  44. Strauch E., Kaspar H., Schaudinn C., Dersch P., Madela K., Gewinner C., Hertwig S., Wecke J., Appel B. ( 2001). Characterization of enterocoliticin, a phage tail-like bacteriocin, and its effect on pathogenic Yersinia enterocolitica strains. Appl Environ Microbiol 67:5634–5642 [View Article][PubMed]
    [Google Scholar]
  45. Stutz E. W., Défago G., Kern H. ( 1986). Naturally occurring fluorescent pseudomonads involved in suppression of black root rot of tobacco. Phytopathology 76:181–185 [View Article]
    [Google Scholar]
  46. Verluyten J., Messens W., De Vuyst L. ( 2004). Sodium chloride reduces production of curvacin A, a bacteriocin produced by Lactobacillus curvatus strain LTH 1174, originating from fermented sausage. Appl Environ Microbiol 70:2271–2278 [View Article][PubMed]
    [Google Scholar]
  47. Williams S. R., Gebhart D., Martin D. W., Scholl D. ( 2008). Retargeting R-type pyocins to generate novel bactericidal protein complexes. Appl Environ Microbiol 74:3868–3876 [View Article][PubMed]
    [Google Scholar]
  48. Young I., Wang I. N., Roof W. D. ( 2000). Phages will out: strategies of host cell lysis. Trends Microbiol 8:120–128 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.056002-0
Loading
/content/journal/micro/10.1099/mic.0.056002-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error