1887

Abstract

The Min system plays an important role in ensuring that cell division occurs at mid-cell in rod-shaped bacteria. In pole-to-pole oscillation of the Min proteins specifically inhibits polar septation. This system also prevents polar division in during vegetative growth; however, the Min proteins do not oscillate in this organism. The Min system of plays a distinct role during sporulation, a process of differentiation which begins with an asymmetrical cell division. Here, we show that oscillation of the Min proteins can be reproduced following their introduction into cells. Further, we present evidence that the oscillatory behaviour of the Min system inhibits sporulation. We propose that an alternative Min system mechanism avoiding oscillation is evolutionarily important because oscillation of the Min system is incompatible with efficient asymmetrical septum formation and sporulation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.059295-0
2012-08-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/158/8/1972.html?itemId=/content/journal/micro/10.1099/mic.0.059295-0&mimeType=html&fmt=ahah

References

  1. Adler H. I., Fisher W. D., Cohen A., Hardigree A. A. ( 1967). Miniature Escherichia coli cells deficient in DNA. Proc Natl Acad Sci U S A 57:321–326 [View Article][PubMed]
    [Google Scholar]
  2. Altschul S. F., Madden T. L., Schäffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. ( 1997). Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [View Article][PubMed]
    [Google Scholar]
  3. Ausubel F. M., Brent R., Kingston R. E., Moore D. D., Siedman J. G., Smith J. A., Struhl K. ( 1987). Current Protocols in Molecular Biology New York: Greene Publishing and Wiley;
    [Google Scholar]
  4. Barák I., Prepiak P., Schmeisser F. ( 1998). MinCD proteins control the septation process during sporulation of Bacillus subtilis . J Bacteriol 180:5327–5333[PubMed]
    [Google Scholar]
  5. Barák I., Ricca E., Cutting S. M. ( 2005). From fundamental studies of sporulation to applied spore research. Mol Microbiol 55:330–338 [View Article][PubMed]
    [Google Scholar]
  6. Barák I., Muchová K., Wilkinson A. J., O’Toole P. J., Pavlendová N. ( 2008). Lipid spirals in Bacillus subtilis and their role in cell division. Mol Microbiol 68:1315–1327 [View Article][PubMed]
    [Google Scholar]
  7. Ben-Yehuda S., Rudner D. Z., Losick R. ( 2003). RacA, a bacterial protein that anchors chromosomes to the cell poles. Science 299:532–536 [View Article][PubMed]
    [Google Scholar]
  8. Benson A. K., Haldenwang W. G. ( 1993). Regulation of σB levels and activity in Bacillus subtilis . J Bacteriol 175:2347–2356[PubMed]
    [Google Scholar]
  9. Bi E. F., Lutkenhaus J. ( 1991). FtsZ ring structure associated with division in Escherichia coli . Nature 354:161–164 [View Article][PubMed]
    [Google Scholar]
  10. Bramkamp M., Emmins R., Weston L., Donovan C., Daniel R. A., Errington J. ( 2008). A novel component of the division-site selection system of Bacillus subtilis and a new mode of action for the division inhibitor MinCD. Mol Microbiol 70:1556–1569 [View Article][PubMed]
    [Google Scholar]
  11. de Boer P. A., Crossley R. E., Rothfield L. I. ( 1989). A division inhibitor and a topological specificity factor coded for by the minicell locus determine proper placement of the division septum in E. coli . Cell 56:641–649 [View Article][PubMed]
    [Google Scholar]
  12. de Boer P. A., Crossley R. E., Hand A. R., Rothfield L. I. ( 1991). The MinD protein is a membrane ATPase required for the correct placement of the Escherichia coli division site. EMBO J 10:4371–4380[PubMed]
    [Google Scholar]
  13. Di Ventura B., Sourjik V. ( 2011). Self-organized partitioning of dynamically localized proteins in bacterial cell division. Mol Syst Biol 7:457 [View Article][PubMed]
    [Google Scholar]
  14. Drew D. A., Osborn M. J., Rothfield L. I. ( 2005). A polymerization-depolymerization model that accurately generates the self-sustained oscillatory system involved in bacterial division site placement. Proc Natl Acad Sci U S A 102:6114–6118 [View Article][PubMed]
    [Google Scholar]
  15. Edwards D. H., Errington J. ( 1997). The Bacillus subtilis DivIVA protein targets to the division septum and controls the site specificity of cell division. Mol Microbiol 24:905–915 [View Article][PubMed]
    [Google Scholar]
  16. Eswaramoorthy P., Erb M. L., Gregory J. A., Silverman J., Pogliano K., Pogliano J., Ramamurthi K. S. ( 2011). Cellular architecture mediates DivIVA ultrastructure and regulates Min activity in Bacillus subtilis . MBio 2:e00257–e11 [View Article][PubMed]
    [Google Scholar]
  17. Fu X., Shih Y. L., Zhang Y., Rothfield L. I. ( 2001). The MinE ring required for proper placement of the division site is a mobile structure that changes its cellular location during the Escherichia coli division cycle. Proc Natl Acad Sci U S A 98:980–985 [View Article][PubMed]
    [Google Scholar]
  18. Gregory J. A., Becker E. C., Pogliano K. ( 2008). Bacillus subtilis MinC destabilizes FtsZ-rings at new cell poles and contributes to the timing of cell division. Genes Dev 22:3475–3488 [View Article][PubMed]
    [Google Scholar]
  19. Guérout-Fleury A. M., Frandsen N., Stragier P. ( 1996). Plasmids for ectopic integration in Bacillus subtilis . Gene 180:57–61 [View Article][PubMed]
    [Google Scholar]
  20. Hale C. A., Meinhardt H., de Boer P. A. ( 2001). Dynamic localization cycle of the cell division regulator MinE in Escherichia coli . EMBO J 20:1563–1572 [View Article][PubMed]
    [Google Scholar]
  21. Harwood C. R., Cutting S. M. ( 1990). Molecular Biological Methods for Bacillus Chichester, UK: Wiley;
    [Google Scholar]
  22. Hoch J. A. ( 1993). Regulation of the phosphorelay and the initiation of sporulation in Bacillus subtilis . Annu Rev Microbiol 47:441–465 [View Article][PubMed]
    [Google Scholar]
  23. Hu Z., Lutkenhaus J. ( 1999). Topological regulation of cell division in Escherichia coli involves rapid pole to pole oscillation of the division inhibitor MinC under the control of MinD and MinE. Mol Microbiol 34:82–90 [View Article][PubMed]
    [Google Scholar]
  24. Hu Z., Lutkenhaus J. ( 2001). Topological regulation of cell division in E. coli. Spatiotemporal oscillation of MinD requires stimulation of its ATPase by MinE and phospholipid. Mol Cell 7:1337–1343 [View Article][PubMed]
    [Google Scholar]
  25. Hu Z., Lutkenhaus J. ( 2003). A conserved sequence at the C-terminus of MinD is required for binding to the membrane and targeting MinC to the septum. Mol Microbiol 47:345–355 [View Article][PubMed]
    [Google Scholar]
  26. Hu Z., Gogol E. P., Lutkenhaus J. ( 2002). Dynamic assembly of MinD on phospholipid vesicles regulated by ATP and MinE. Proc Natl Acad Sci U S A 99:6761–6766 [View Article][PubMed]
    [Google Scholar]
  27. Ju J., Luo T., Haldenwang W. G. ( 1998). Forespore expression and processing of the SigE transcription factor in wild-type and mutant Bacillus subtilis . J Bacteriol 180:1673–1681[PubMed]
    [Google Scholar]
  28. Juarez J. R., Margolin W. ( 2010). Changes in the Min oscillation pattern before and after cell birth. J Bacteriol 192:4134–4142 [View Article][PubMed]
    [Google Scholar]
  29. Kaiser D. ( 2003). Coupling cell movement to multicellular development in myxobacteria. Nat Rev Microbiol 1:45–54 [View Article][PubMed]
    [Google Scholar]
  30. Karimova G., Pidoux J., Ullmann A., Ladant D. ( 1998). A bacterial two-hybrid system based on a reconstituted signal transduction pathway. Proc Natl Acad Sci U S A 95:5752–5756 [View Article][PubMed]
    [Google Scholar]
  31. Kusters R., Dowhan W., de Kruijff B. ( 1991). Negatively charged phospholipids restore prePhoE translocation across phosphatidylglycerol-depleted Escherichia coli inner membranes. J Biol Chem 266:8659–8662[PubMed]
    [Google Scholar]
  32. Lenarcic R., Halbedel S., Visser L., Shaw M., Wu L. J., Errington J., Marenduzzo D., Hamoen L. W. ( 2009). Localisation of DivIVA by targeting to negatively curved membranes. EMBO J 28:2272–2282 [View Article][PubMed]
    [Google Scholar]
  33. Loose M., Fischer-Friedrich E., Ries J., Kruse K., Schwille P. ( 2008). Spatial regulators for bacterial cell division self-organize into surface waves in vitro. Science 320:789–792 [View Article][PubMed]
    [Google Scholar]
  34. López C. S., Heras H., Ruzal S. M., Sánchez-Rivas C., Rivas E. A. ( 1998). Variations of the envelope composition of Bacillus subtilis during growth in hyperosmotic medium. Curr Microbiol 36:55–61 [View Article][PubMed]
    [Google Scholar]
  35. Marston A. L., Errington J. ( 1999). Selection of the midcell division site in Bacillus subtilis through MinD-dependent polar localization and activation of MinC. Mol Microbiol 33:84–96 [View Article][PubMed]
    [Google Scholar]
  36. Marston A. L., Thomaides H. B., Edwards D. H., Sharpe M. E., Errington J. ( 1998). Polar localization of the MinD protein of Bacillus subtilis and its role in selection of the mid-cell division site. Genes Dev 12:3419–3430 [View Article][PubMed]
    [Google Scholar]
  37. Meselson M., Yuan R. ( 1968). DNA restriction enzyme from E. coli . Nature 217:1110–1114 [View Article][PubMed]
    [Google Scholar]
  38. Miller J. H. ( 1972). Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  39. Molle V., Fujita M., Jensen S. T., Eichenberger P., González-Pastor J. E., Liu J. S., Losick R. ( 2003). The Spo0A regulon of Bacillus subtilis . Mol Microbiol 50:1683–1701 [View Article][PubMed]
    [Google Scholar]
  40. Patrick J. E., Kearns D. B. ( 2008). MinJ (YvjD) is a topological determinant of cell division in Bacillus subtilis . Mol Microbiol 70:1166–1179 [View Article][PubMed]
    [Google Scholar]
  41. Pavlendová N., Muchová K., Barák I. ( 2010). Expression of Escherichia coli Min system in Bacillus subtilis and its effect on cell division. FEMS Microbiol Lett 302:58–68 [View Article][PubMed]
    [Google Scholar]
  42. Perego M., Hoch J. A. ( 2002). Two component systems, phosphorelays, and regulation of their activities by phophatases. Bacillus subtilis and its Closest Relatives: from Genes to Cells483–517 Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology Press;
    [Google Scholar]
  43. Piggot P. J., Losick R. ( 2002). Sporulation genes and intercompartmental regulation. Bacillus subtilis and its Closest Relatives: from Genes to Cells473–481 Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology Press;
    [Google Scholar]
  44. Ramamurthi K. S., Losick R. ( 2009). Negative membrane curvature as a cue for subcellular localization of a bacterial protein. Proc Natl Acad Sci U S A 106:13541–13545 [View Article][PubMed]
    [Google Scholar]
  45. Ramirez-Arcos S., Szeto J., Dillon J. A., Margolin W. ( 2002). Conservation of dynamic localization among MinD and MinE orthologues: oscillation of Neisseria gonorrhoeae proteins in Escherichia coli . Mol Microbiol 46:493–504 [View Article][PubMed]
    [Google Scholar]
  46. Raskin D. M., de Boer P. A. ( 1999a). Rapid pole-to-pole oscillation of a protein required for directing division to the middle of Escherichia coli . Proc Natl Acad Sci U S A 96:4971–4976 [View Article][PubMed]
    [Google Scholar]
  47. Raskin D. M., de Boer P. A. ( 1999b). MinDE-dependent pole-to-pole oscillation of division inhibitor MinC in Escherichia coli . J Bacteriol 181:6419–6424[PubMed]
    [Google Scholar]
  48. Reeve J. N., Mendelson N. H., Coyne S. I., Hallock L. L., Cole R. M. ( 1973). Minicells of Bacillus subtilis . J Bacteriol 114:860–873[PubMed]
    [Google Scholar]
  49. Rothfield L., Taghbalout A., Shih Y. L. ( 2005). Spatial control of bacterial division-site placement. Nat Rev Microbiol 3:959–968 [View Article][PubMed]
    [Google Scholar]
  50. Sambrook J., Fritsch E. F., Maniatis T. ( 1989). Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  51. Schaeffer P., Millet J., Aubert J. P. ( 1965). Catabolic repression of bacterial sporulation. Proc Natl Acad Sci U S A 54:704–711 [View Article][PubMed]
    [Google Scholar]
  52. Schmeisser F., Brannigan J. A., Lewis R. J., Wilkinson A. J., Youngman P., Barák I. ( 2000). A new mutation in spo0A with intragenic suppressors in the effector domain. FEMS Microbiol Lett 185:123–128 [View Article][PubMed]
    [Google Scholar]
  53. Sharp M. D., Pogliano K. ( 2002). MinCD-dependent regulation of the polarity of SpoIIIE assembly and DNA transfer. EMBO J 21:6267–6274 [View Article][PubMed]
    [Google Scholar]
  54. Shih Y. L., Fu X., King G. F., Le T., Rothfield L. ( 2002). Division site placement in E. coli: mutations that prevent formation of the MinE ring lead to loss of the normal midcell arrest of growth of polar MinD membrane domains. EMBO J 21:3347–3357 [View Article][PubMed]
    [Google Scholar]
  55. Shih Y. L., Le T., Rothfield L. ( 2003). Division site selection in Escherichia coli involves dynamic redistribution of Min proteins within coiled structures that extend between the two cell poles. Proc Natl Acad Sci U S A 100:7865–7870 [View Article][PubMed]
    [Google Scholar]
  56. Szeto T. H., Rowland S. L., Habrukowich C. L., King G. F. ( 2003). The MinD membrane targeting sequence is a transplantable lipid-binding helix. J Biol Chem 278:40050–40056 [View Article][PubMed]
    [Google Scholar]
  57. Thomaides H. B., Freeman M., El Karoui M., Errington J. ( 2001). Division site selection protein DivIVA of Bacillus subtilis has a second distinct function in chromosome segregation during sporulation. Genes Dev 15:1662–1673 [View Article][PubMed]
    [Google Scholar]
  58. Tocheva E. I., Matson E. G., Morris D. M., Moussavi F., Leadbetter J. R., Jensen G. J. ( 2011). Peptidoglycan remodeling and conversion of an inner membrane into an outer membrane during sporulation. Cell 146:799–812 [View Article][PubMed]
    [Google Scholar]
  59. Touhami A., Jericho M., Rutenberg A. D. ( 2006). Temperature dependence of MinD oscillation in Escherichia coli: running hot and fast. J Bacteriol 188:7661–7667 [View Article][PubMed]
    [Google Scholar]
  60. Webb C. D., Teleman A., Gordon S., Straight A., Belmont A., Lin D. C., Grossman A. D., Wright A., Losick R. ( 1997). Bipolar localization of the replication origin regions of chromosomes in vegetative and sporulating cells of B. subtilis . Cell 88:667–674 [View Article][PubMed]
    [Google Scholar]
  61. Wu L. J., Errington J. ( 1994). Bacillus subtilis SpoIIIE protein required for DNA segregation during asymmetric cell division. Science 264:572–575 [View Article][PubMed]
    [Google Scholar]
  62. Wu L. J., Errington J. ( 1998). Use of asymmetric cell division and spoIIIE mutants to probe chromosome orientation and organization in Bacillus subtilis . Mol Microbiol 27:777–786 [View Article][PubMed]
    [Google Scholar]
  63. Wu L. J., Errington J. ( 2003). RacA and the Soj–Spo0J system combine to effect polar chromosome segregation in sporulating Bacillus subtilis . Mol Microbiol 49:1463–1475 [View Article][PubMed]
    [Google Scholar]
  64. Youngman P. J., Perkins J. B., Losick R. ( 1984). Construction of a cloning site near one end of Tn917 into which foreign DNA may be inserted without affecting transposition in Bacillus subtilis or expression of the transposon-borne erm gene. Plasmid 12:1–9 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.059295-0
Loading
/content/journal/micro/10.1099/mic.0.059295-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error