1887

Abstract

is a Gram-negative, opportunistic pathogen that causes infections in the lungs of individuals with the genetic disease cystic fibrosis. Density-dependent production of toxic factors regulated by the Pseudomonas quinolone signal (2-heptyl-3-hydroxy-4-quinolone; PQS) have been proposed to be involved in virulence. PQS biosynthesis requires conversion of the central metabolite chorismate to anthranilate by anthranilate synthase. This reaction is also the first step in tryptophan biosynthesis. possesses two functional anthranilate synthases, TrpEG and PhnAB, and these enzymes are not functionally redundant, as mutants are tryptophan auxotrophs but produce PQS while mutants in are tryptophan prototrophs but do not produce PQS in minimal media. The goal of the work described in this paper was to determine the mechanism for this lack of functional complementation of TrpEG and PhnAB. Our results reveal that overexpression of either enzyme compensates for tryptophan auxotrophy and PQS production in the and mutants respectively, leading to the hypothesis that differential regulation of these genes is responsible for the lack of functional complementation. In support of this hypothesis, was shown to be expressed primarily during low-density growth while was expressed primarily at high density. Furthermore, dysregulation of expression eliminated tryptophan auxotrophy in the mutant. Based on these data, we propose a model for anthranilate sequestration by differential transcriptional regulation of the two anthranilate synthase enzymes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.063065-0
2013-05-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/5/959.html?itemId=/content/journal/micro/10.1099/mic.0.063065-0&mimeType=html&fmt=ahah

References

  1. Ausubel F. M.( 2002). Short Protocols in Molecular Biology: a Compendium of Methods from Current Protocols in Molecular Biology, 5th edn. New York: Wiley;
    [Google Scholar]
  2. Bredenbruch F., Nimtz M., Wray V., Morr M., Müller R., Häussler S.( 2005). Biosynthetic pathway of Pseudomonas aeruginosa 4-hydroxy-2-alkylquinolines. J Bacteriol 187:3630–3635 [View Article][PubMed]
    [Google Scholar]
  3. Calfee M. W., Coleman J. P., Pesci E. C.( 2001). Interference with Pseudomonas quinolone signal synthesis inhibits virulence factor expression by Pseudomonas aeruginosa.. Proc Natl Acad Sci U S A 98:11633–11637 [View Article][PubMed]
    [Google Scholar]
  4. Cao H., Krishnan G., Goumnerov B., Tsongalis J., Tompkins R., Rahme L. G.( 2001). A quorum sensing-associated virulence gene of Pseudomonas aeruginosa encodes a LysR-like transcription regulator with a unique self-regulatory mechanism. Proc Natl Acad Sci U S A 98:14613–14618 [View Article][PubMed]
    [Google Scholar]
  5. Coleman J. P., Hudson L. L., McKnight S. L., Farrow J. M. III, Calfee M. W., Lindsey C. A., Pesci E. C.( 2008). Pseudomonas aeruginosa PqsA is an anthranilate-coenzyme A ligase. J Bacteriol 190:1247–1255 [View Article][PubMed]
    [Google Scholar]
  6. de Lorenzo V., Timmis K. N.( 1994). Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn5- and Tn10-derived minitransposons. Methods Enzymol 235:386–405 [View Article][PubMed]
    [Google Scholar]
  7. Delhaes L., Monchy S., Fréalle E., Hubans C., Salleron J., Leroy S., Prevotat A., Wallet F., Wallaert B. et al.( 2012). The airway microbiota in cystic fibrosis: a complex fungal and bacterial community–implications for therapeutic management. PLoS ONE 7:e36313 [View Article][PubMed]
    [Google Scholar]
  8. Déziel E., Gopalan S., Tampakaki A. P., Lépine F., Padfield K. E., Saucier M., Xiao G., Rahme L. G.( 2005). The contribution of MvfR to Pseudomonas aeruginosa pathogenesis and quorum sensing circuitry regulation: multiple quorum sensing-regulated genes are modulated without affecting lasRI, rhlRI or the production of N-acyl-l-homoserine lactones. Mol Microbiol 55:998–1014 [View Article][PubMed]
    [Google Scholar]
  9. Diggle S. P., Lumjiaktase P., Dipilato F., Winzer K., Kunakorn M., Barrett D. A., Chhabra S. R., Cámara M., Williams P.( 2006). Functional genetic analysis reveals a 2-alkyl-4-quinolone signaling system in the human pathogen Burkholderia pseudomallei and related bacteria. Chem Biol 13:701–710 [View Article][PubMed]
    [Google Scholar]
  10. Emerson J., Rosenfeld M., McNamara S., Ramsey B., Gibson R. L.( 2002). Pseudomonas aeruginosa and other predictors of mortality and morbidity in young children with cystic fibrosis. Pediatr Pulmonol 34:91–100 [View Article][PubMed]
    [Google Scholar]
  11. Essar D. W., Eberly L., Hadero A., Crawford I. P.( 1990a). Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa: interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900[PubMed]
    [Google Scholar]
  12. Essar D. W., Eberly L., Han C. Y., Crawford I. P.( 1990b). DNA sequences and characterization of four early genes of the tryptophan pathway in Pseudomonas aeruginosa.. J Bacteriol 172:853–866[PubMed]
    [Google Scholar]
  13. Farrow J. M. III, Pesci E. C.( 2007). Two distinct pathways supply anthranilate as a precursor of the Pseudomonas quinolone signal. J Bacteriol 189:3425–3433 [View Article][PubMed]
    [Google Scholar]
  14. Gallagher L. A., Manoil C.( 2001). Pseudomonas aeruginosa PAO1 kills Caenorhabditis elegans by cyanide poisoning. J Bacteriol 183:6207–6214 [View Article][PubMed]
    [Google Scholar]
  15. Gallagher L. A., McKnight S. L., Kuznetsova M. S., Pesci E. C., Manoil C.( 2002). Functions required for extracellular quinolone signaling by Pseudomonas aeruginosa.. J Bacteriol 184:6472–6480 [View Article][PubMed]
    [Google Scholar]
  16. Harrison F.( 2007). Microbial ecology of the cystic fibrosis lung. Microbiology 153:917–923 [View Article][PubMed]
    [Google Scholar]
  17. Hoang T. T., Karkhoff-Schweizer R. R., Kutchma A. J., Schweizer H. P.( 1998). A broad-host-range Flp-FRT recombination system for site-specific excision of chromosomally-located DNA sequences: application for isolation of unmarked Pseudomonas aeruginosa mutants. Gene 212:77–86 [View Article][PubMed]
    [Google Scholar]
  18. Hoiby N., Flensborg E. W., Beck B., Friis B., Jacobsen S. V., Jacobsen L.( 1977). Pseudomonas aeruginosa infection in cystic fibrosis. Diagnostic and prognostic significance of Pseudomonas aeruginosa precipitins determined by means of crossed immunoelectrophoresis. Scand J Respir Dis 58:65–79[PubMed]
    [Google Scholar]
  19. Lépine F., Milot S., Déziel E., He J., Rahme L. G.( 2004). Electrospray/mass spectrometric identification and analysis of 4-hydroxy-2-alkylquinolines (HAQs) produced by Pseudomonas aeruginosa.. J Am Soc Mass Spectrom 15:862–869 [View Article][PubMed]
    [Google Scholar]
  20. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M.( 2006). An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838 [View Article][PubMed]
    [Google Scholar]
  21. Mashburn L. M., Whiteley M.( 2005). Membrane vesicles traffic signals and facilitate group activities in a prokaryote. Nature 437:422–425 [View Article][PubMed]
    [Google Scholar]
  22. Mavrodi D. V., Bonsall R. F., Delaney S. M., Soule M. J., Phillips G., Thomashow L. S.( 2001). Functional analysis of genes for biosynthesis of pyocyanin and phenazine-1-carboxamide from Pseudomonas aeruginosa PAO1. J Bacteriol 183:6454–6465 [View Article][PubMed]
    [Google Scholar]
  23. Merino E., Jensen R. A., Yanofsky C.( 2008). Evolution of bacterial trp operons and their regulation. Curr Opin Microbiol 11:78–86 [View Article][PubMed]
    [Google Scholar]
  24. Newman J. R., Fuqua C.( 1999). Broad-host-range expression vectors that carry the l-arabinose-inducible Escherichia coli araBAD promoter and the araC regulator. Gene 227:197–203 [View Article][PubMed]
    [Google Scholar]
  25. Palmer K. L., Mashburn L. M., Singh P. K., Whiteley M.( 2005). Cystic fibrosis sputum supports growth and cues key aspects of Pseudomonas aeruginosa physiology. J Bacteriol 187:5267–5277 [View Article][PubMed]
    [Google Scholar]
  26. Palmer K. L., Aye L. M., Whiteley M.( 2007). Nutritional cues control Pseudomonas aeruginosa multicellular behavior in cystic fibrosis sputum. J Bacteriol 189:8079–8087 [View Article][PubMed]
    [Google Scholar]
  27. Palmer G. C., Palmer K. L., Jorth P. A., Whiteley M.( 2010). Characterization of the Pseudomonas aeruginosa transcriptional response to phenylalanine and tyrosine. J Bacteriol 192:2722–2728 [View Article][PubMed]
    [Google Scholar]
  28. Palmer G. C., Schertzer J. W., Mashburn-Warren L., Whiteley M.( 2011). Quantifying Pseudomonas aeruginosa quinolones and examining their interactions with lipids. Methods Mol Biol 692:207–217 [View Article][PubMed]
    [Google Scholar]
  29. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H.( 1999). Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa.. Proc Natl Acad Sci U S A 96:11229–11234 [View Article][PubMed]
    [Google Scholar]
  30. Rumbaugh K. P., Griswold J. A., Iglewski B. H., Hamood A. N.( 1999). Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862[PubMed]
    [Google Scholar]
  31. Sambrook J., Russell D. W.( 2001). Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  32. Schuster M., Greenberg E. P.( 2006). A network of networks: quorum-sensing gene regulation in Pseudomonas aeruginosa.. Int J Med Microbiol 296:73–81 [View Article][PubMed]
    [Google Scholar]
  33. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P.( 2003). Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079 [View Article][PubMed]
    [Google Scholar]
  34. Tamura K., Peterson D., Peterson N., Stecher G., Nei M., Kumar S.( 2011). MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol Biol Evol 28:2731–2739 [View Article][PubMed]
    [Google Scholar]
  35. Vial L., Lépine F., Milot S., Groleau M. C., Dekimpe V., Woods D. E., Déziel E.( 2008). Burkholderia pseudomallei, B. thailandensis, and B. ambifaria produce 4-hydroxy-2-alkylquinoline analogues with a methyl group at the 3 position that is required for quorum-sensing regulation. J Bacteriol 190:5339–5352 [View Article][PubMed]
    [Google Scholar]
  36. Whiteley M., Lee K. M., Greenberg E. P.( 1999). Identification of genes controlled by quorum sensing in Pseudomonas aeruginosa.. Proc Natl Acad Sci U S A 96:13904–13909 [View Article][PubMed]
    [Google Scholar]
  37. Whiteley M., Parsek M. R., Greenberg E. P.( 2000). Regulation of quorum sensing by RpoS in Pseudomonas aeruginosa.. J Bacteriol 182:4356–4360 [View Article][PubMed]
    [Google Scholar]
  38. Xiao G., He J., Rahme L. G.( 2006). Mutation analysis of the Pseudomonas aeruginosa mvfR and pqsABCDE gene promoters demonstrates complex quorum-sensing circuitry. Microbiology 152:1679–1686 [View Article][PubMed]
    [Google Scholar]
  39. Xie G., Bonner C. A., Song J., Keyhani N. O., Jensen R. A.( 2004). Inter-genomic displacement via lateral gene transfer of bacterial trp operons in an overall context of vertical genealogy. BMC Biol 2:15 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.063065-0
Loading
/content/journal/micro/10.1099/mic.0.063065-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error