1887

Abstract

Human milk is a rich source of nutrients and energy, shaped by mammalian evolution to provide all the nutritive requirements of the newborn. In addition, several molecules in breast milk act as bioactive agents, playing an important role in infant protection and guiding a proper development. While major breast milk nutrients such as lactose, lipids and proteins are readily digested and consumed by the infant, other molecules, such as human milk oligosaccharides and glycosylated proteins and lipids, can escape intestinal digestion and transit through the gastrointestinal tract. In this environment, these molecules guide the composition of the developing infant intestinal microbiota by preventing the colonization of enteric pathogens and providing carbon and nitrogen sources for other colonic commensals. Only a few bacteria, in particular species, can gain access to the energetic content of milk as it is displayed in the colon, probably contributing to their predominance in the intestinal microbiota in the first year of life. Bifidobacteria deploy exquisite molecular mechanisms to utilize human milk oligosaccharides, and recent evidence indicates that their activities also target other human milk glycoconjugates. Here, we review advances in our understanding of how these microbes have been shaped by breast milk components and the strategies associated with their consumption of milk glycoconjugates.

Funding
This study was supported by the:
  • University of California Discovery Grant Program
  • California Dairy Research Foundation
  • Bill and Melinda Gates Foundation
  • National Institutes of Health (Award R01AT007079, R21AT006180, R01HD061923, R01HD065122 and R01HD059127)
  • Fulbright-Conicyt Chile
  • National Milk Producers Federation
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.064113-0
2013-04-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/4/649.html?itemId=/content/journal/micro/10.1099/mic.0.064113-0&mimeType=html&fmt=ahah

References

  1. Adlerberth I., Lindberg E., Aberg N., Hesselmar B., Saalman R., Strannegård I. L., Wold A. E. ( 2006). Reduced enterobacterial and increased staphylococcal colonization of the infantile bowel: an effect of hygienic lifestyle?. Pediatr Res 59:96–101 [View Article] [PubMed]
    [Google Scholar]
  2. Albrecht S., Schols H. A., van den Heuvel E. G., Voragen A. G., Gruppen H. ( 2011). Occurrence of oligosaccharides in feces of breast-fed babies in their first six months of life and the corresponding breast milk. Carbohydr Res 346:2540–2550 [View Article] [PubMed]
    [Google Scholar]
  3. Allen J. C., Keller R. P., Archer P., Neville M. C. ( 1991). Studies in human lactation: milk composition and daily secretion rates of macronutrients in the first year of lactation. Am J Clin Nutr 54:69–80 [PubMed]
    [Google Scholar]
  4. American Academy of Pediatrics Section on Breastfeeding ( 2012). Breastfeeding and the use of human milk. Pediatrics 129:e827–e841 [View Article] [PubMed]
    [Google Scholar]
  5. Asakuma S., Hatakeyama E., Urashima T., Yoshida E., Katayama T., Yamamoto K., Kumagai H., Ashida H., Hirose J., Kitaoka M. ( 2011). Physiology of consumption of human milk oligosaccharides by infant gut-associated bifidobacteria. J Biol Chem 286:34583–34592 [View Article] [PubMed]
    [Google Scholar]
  6. Ashida H., Maki R., Ozawa H., Tani Y., Kiyohara M., Fujita M., Imamura A., Ishida H., Kiso M., Yamamoto K. ( 2008). Characterization of two different endo-α-N-acetylgalactosaminidases from probiotic and pathogenic enterobacteria, Bifidobacterium longum and Clostridium perfringens . Glycobiology 18:727–734 [View Article] [PubMed]
    [Google Scholar]
  7. Ashida H., Miyake A., Kiyohara M., Wada J., Yoshida E., Kumagai H., Katayama T., Yamamoto K. ( 2009). Two distinct α-l-fucosidases from Bifidobacterium bifidum are essential for the utilization of fucosylated milk oligosaccharides and glycoconjugates. Glycobiology 19:1010–1017 [View Article] [PubMed]
    [Google Scholar]
  8. Avershina E., Storrø O., Oien T., Johnsen R., Wilson R., Egeland T., Rudi K. ( 2013). Bifidobacterial succession and correlation networks in a large unselected cohort of mothers and their children. Appl Environ Microbiol 79:497–507 [View Article] [PubMed]
    [Google Scholar]
  9. Bäckhed F., Ley R. E., Sonnenburg J. L., Peterson D. A., Gordon J. I. ( 2005). Host-bacterial mutualism in the human intestine. Science 307:1915–1920 [View Article] [PubMed]
    [Google Scholar]
  10. Bager P., Wohlfahrt J., Westergaard T. ( 2008). Caesarean delivery and risk of atopy and allergic disease: meta-analyses. Clin Exp Allergy 38:634–642 [View Article] [PubMed]
    [Google Scholar]
  11. Bakker-Zierikzee A. M., Alles M. S., Knol J., Kok F. J., Tolboom J. J., Bindels J. G. ( 2005). Effects of infant formula containing a mixture of galacto- and fructo-oligosaccharides or viable Bifidobacterium animalis on the intestinal microflora during the first 4 months of life. Br J Nutr 94:783–790 [View Article] [PubMed]
    [Google Scholar]
  12. Barboza M., Sela D. A., Pirim C., Locascio R. G., Freeman S. L., German J. B., Mills D. A., Lebrilla C. B. ( 2009). Glycoprofiling bifidobacterial consumption of galacto-oligosaccharides by mass spectrometry reveals strain-specific, preferential consumption of glycans. Appl Environ Microbiol 75:7319–7325 [View Article] [PubMed]
    [Google Scholar]
  13. Barboza M., Pinzon J., Wickramasinghe S., Froehlich J. W., Moeller I., Smilowitz J. T., Ruhaak L. R., Huang J., Lönnerdal B. & other authors ( 2012). Glycosylation of human milk lactoferrin exhibits dynamic changes during early lactation enhancing its role in pathogenic bacteria-host interactions. Mol Cell Proteomics 11:015248 [PubMed] [CrossRef]
    [Google Scholar]
  14. Barile D., Marotta M., Chu C., Mehra R., Grimm R., Lebrilla C. B., German J. B. ( 2010). Neutral and acidic oligosaccharides in Holstein-Friesian colostrum during the first 3 days of lactation measured by high performance liquid chromatography on a microfluidic chip and time-of-flight mass spectrometry. J Dairy Sci 93:3940–3949 [View Article] [PubMed]
    [Google Scholar]
  15. Bode L., Jantscher-Krenn E. ( 2012). Structure-function relationships of human milk oligosaccharides. Adv Nutr 3:383S–391S [PubMed] [CrossRef]
    [Google Scholar]
  16. Boesten R., Schuren F., Ben Amor K., Haarman M., Knol J., de Vos W. M. ( 2011). Bifidobacterium population analysis in the infant gut by direct mapping of genomic hybridization patterns: potential for monitoring temporal development and effects of dietary regimens. Microb Biotechnol 4:417–427 [View Article] [PubMed]
    [Google Scholar]
  17. Bouhours J. F., Bouhours D. ( 1979). Galactosylceramide is the major cerebroside of human milk fat globule membrane. Biochem Biophys Res Commun 88:1217–1222 [View Article] [PubMed]
    [Google Scholar]
  18. Brockhausen I., Schachter H., Stanley P. ( 2009). O-GalNAc glycans. Essentials of Glycobiology, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  19. Brunser O., Gotteland M., Cruchet S., Figueroa G., Garrido D., Steenhout P. ( 2006). Effect of a milk formula with prebiotics on the intestinal microbiota of infants after an antibiotic treatment. Pediatr Res 59:451–456 [View Article] [PubMed]
    [Google Scholar]
  20. Cabrera-Rubio R., Collado M. C., Laitinen K., Salminen S., Isolauri E., Mira A. ( 2012). The human milk microbiome changes over lactation and is shaped by maternal weight and mode of delivery. Am J Clin Nutr 96:544–551 [View Article] [PubMed]
    [Google Scholar]
  21. Chaturvedi P., Warren C. D., Buescher C. R., Pickering L. K., Newburg D. S. ( 2001). Survival of human milk oligosaccharides in the intestine of infants. Adv Exp Med Biol 501:315–323 [View Article] [PubMed]
    [Google Scholar]
  22. Chen J., Cai W., Feng Y. ( 2007). Development of intestinal bifidobacteria and lactobacilli in breast-fed neonates. Clin Nutr 26:559–566 [View Article] [PubMed]
    [Google Scholar]
  23. Chichlowski M., De Lartigue G., German J. B., Raybould H. E., Mills D. A. ( 2012). Bifidobacteria isolated from infants and cultured on human milk oligosaccharides affect intestinal epithelial function. J Pediatr Gastroenterol Nutr 55:321–327 [View Article] [PubMed]
    [Google Scholar]
  24. Cho I., Yamanishi S., Cox L., Methé B. A., Zavadil J., Li K., Gao Z., Mahana D., Raju K. & other authors ( 2012). Antibiotics in early life alter the murine colonic microbiome and adiposity. Nature 488:621–626 [View Article] [PubMed]
    [Google Scholar]
  25. Collado M. C., Laitinen K., Salminen S., Isolauri E. ( 2012). Maternal weight and excessive weight gain during pregnancy modify the immunomodulatory potential of breast milk. Pediatr Res 72:77–85 [View Article] [PubMed]
    [Google Scholar]
  26. Coppa G. V., Pierani P., Zampini L., Carloni I., Carlucci A., Gabrielli O. ( 1999). Oligosaccharides in human milk during different phases of lactation. Acta Paediatr Suppl 88:89–94 [View Article] [PubMed]
    [Google Scholar]
  27. Coppa G. V., Zampini L., Galeazzi T., Facinelli B., Ferrante L., Capretti R., Orazio G. ( 2006). Human milk oligosaccharides inhibit the adhesion to Caco-2 cells of diarrheal pathogens: Escherichia coli, Vibrio cholerae, and Salmonella fyris . Pediatr Res 59:377–382 [View Article] [PubMed]
    [Google Scholar]
  28. Corfield A. P., Wagner S. A., Clamp J. R., Kriaris M. S., Hoskins L. C. ( 1992). Mucin degradation in the human colon: production of sialidase, sialate O-acetylesterase, N-acetylneuraminate lyase, arylesterase, and glycosulfatase activities by strains of fecal bacteria. Infect Immun 60:3971–3978 [PubMed]
    [Google Scholar]
  29. Crociani F., Alessandrini A., Mucci M. M., Biavati B. ( 1994). Degradation of complex carbohydrates by Bifidobacterium spp. Int J Food Microbiol 24:199–210 [View Article] [PubMed]
    [Google Scholar]
  30. Dallas D. C., Martin W. F., Strum J. S., Zivkovic A. M., Smilowitz J. T., Underwood M. A., Affolter M., Lebrilla C. B., German J. B. ( 2011). N-Linked glycan profiling of mature human milk by high-performance microfluidic chip liquid chromatography time-of-flight tandem mass spectrometry. J Agric Food Chem 59:4255–4263 [View Article] [PubMed]
    [Google Scholar]
  31. Dallas D. C., Sela D., Underwood M. A., German J. B., Lebrilla C. B. ( 2012). Protein-linked glycan degradation in infants fed human milk. J Glycomics Lipidomics S1:002
    [Google Scholar]
  32. Davidson L. A., Lönnerdal B. ( 1987). Persistence of human milk proteins in the breast-fed infant. Acta Paediatr Scand 76:733–740 [View Article] [PubMed]
    [Google Scholar]
  33. Davis L. M., Martínez I., Walter J., Goin C., Hutkins R. W. ( 2011). Barcoded pyrosequencing reveals that consumption of galactooligosaccharides results in a highly specific bifidogenic response in humans. PLoS ONE 6:e25200 [View Article] [PubMed]
    [Google Scholar]
  34. De Leoz M. L., Gaerlan S. C., Strum J. S., Dimapasoc L. M., Mirmiran M., Tancredi D. J., Smilowitz J. T., Kalanetra K. M., Mills D. A. & other authors ( 2012). Lacto-N-tetraose, fucosylation, and secretor status are highly variable in human milk oligosaccharides from women delivering preterm. J Proteome Res 11:4662–4672 [View Article] [PubMed]
    [Google Scholar]
  35. Derrien M., van Passel M. W., van de Bovenkamp J. H., Schipper R. G., de Vos W. M., Dekker J. ( 2010). Mucin-bacterial interactions in the human oral cavity and digestive tract. Gut Microbes 1:254–268 [View Article] [PubMed]
    [Google Scholar]
  36. Dewey K. G., Heinig M. J., Nommsen-Rivers L. A. ( 1995). Differences in morbidity between breast-fed and formula-fed infants. J Pediatr 126:696–702 [View Article] [PubMed]
    [Google Scholar]
  37. Dominguez-Bello M. G., Costello E. K., Contreras M., Magris M., Hidalgo G., Fierer N., Knight R. ( 2010). Delivery mode shapes the acquisition and structure of the initial microbiota across multiple body habitats in newborns. Proc Natl Acad Sci U S A 107:11971–11975 [View Article] [PubMed]
    [Google Scholar]
  38. Engfer M. B., Stahl B., Finke B., Sawatzki G., Daniel H. ( 2000). Human milk oligosaccharides are resistant to enzymatic hydrolysis in the upper gastrointestinal tract. Am J Clin Nutr 71:1589–1596 [PubMed]
    [Google Scholar]
  39. Falk P., Hoskins L. C., Larson G. ( 1990). Bacteria of the human intestinal microbiota produce glycosidases specific for lacto-series glycosphingolipids. J Biochem 108:466–474 [PubMed]
    [Google Scholar]
  40. Falk P., Hoskins L. C., Larson G. ( 1991). Enhancing effects of bile salts on the degradation of glycosphingolipids by glycosidases from bacteria of the human fecal flora. Biochim Biophys Acta 1084:139–148 [View Article] [PubMed]
    [Google Scholar]
  41. Fallani M., Young D., Scott J., Norin E., Amarri S., Adam R., Aguilera M., Khanna S., Gil A. & other authors ( 2010). Intestinal microbiota of 6-week-old infants across Europe: geographic influence beyond delivery mode, breast-feeding, and antibiotics. J Pediatr Gastroenterol Nutr 51:77–84 [View Article] [PubMed]
    [Google Scholar]
  42. Fewtrell M. S., Morgan J. B., Duggan C., Gunnlaugsson G., Hibberd P. L., Lucas A., Kleinman R. E. ( 2007). Optimal duration of exclusive breastfeeding: what is the evidence to support current recommendations?. Am J Clin Nutr 85:635S–638S [PubMed]
    [Google Scholar]
  43. Froehlich J. W., Dodds E. D., Barboza M., McJimpsey E. L., Seipert R. R., Francis J., An H. J., Freeman S., German J. B., Lebrilla C. B. ( 2010). Glycoprotein expression in human milk during lactation. J Agric Food Chem 58:6440–6448 [View Article] [PubMed]
    [Google Scholar]
  44. Fujita K., Oura F., Nagamine N., Katayama T., Hiratake J., Sakata K., Kumagai H., Yamamoto K. ( 2005). Identification and molecular cloning of a novel glycoside hydrolase family of core 1 type O-glycan-specific endo-α-N-acetylgalactosaminidase from Bifidobacterium longum . J Biol Chem 280:37415–37422 [View Article] [PubMed]
    [Google Scholar]
  45. Fukuda S., Toh H., Hase K., Oshima K., Nakanishi Y., Yoshimura K., Tobe T., Clarke J. M., Topping D. L. & other authors ( 2011). Bifidobacteria can protect from enteropathogenic infection through production of acetate. Nature 469:543–547 [View Article] [PubMed]
    [Google Scholar]
  46. Garrido D., Kim J. H., German J. B., Raybould H. E., Mills D. A. ( 2011). Oligosaccharide binding proteins from Bifidobacterium longum subsp. infantis reveal a preference for host glycans. PLoS ONE 6:e17315 [View Article] [PubMed]
    [Google Scholar]
  47. Garrido D., Barile D., Mills D. A. ( 2012a). A molecular basis for bifidobacterial enrichment in the infant gastrointestinal tract. Adv Nutr 3:415S–421S [PubMed] [CrossRef]
    [Google Scholar]
  48. Garrido D., Nwosu C., Ruiz-Moyano S., Aldredge D., German J. B., Lebrilla C. B., Mills D. A. ( 2012b). Endo-β-N-acetylglucosaminidases from infant gut-associated bifidobacteria release complex N-glycans from human milk glycoproteins. Mol Cell Proteomics 11:775–785 [View Article] [PubMed]
    [Google Scholar]
  49. Garrido D., Ruiz-Moyano S., Mills D. A. ( 2012c). Release and utilization of N-acetyl-d-glucosamine from human milk oligosaccharides by Bifidobacterium longum subsp. infantis . Anaerobe 18:430–435 [View Article] [PubMed]
    [Google Scholar]
  50. Garrido D., Ruiz-Moyano S., Jimenez-Espinoza R., Eom H. J., Block D. E., Mills D. A. ( 2013). Utilization of galactooligosaccharides by Bifidobacterium longum subsp. infantis isolates. Food Microbiol 33:262–270 [View Article] [PubMed]
    [Google Scholar]
  51. Gdalevich M., Mimouni D., David M., Mimouni M. ( 2001). Breast-feeding and the onset of atopic dermatitis in childhood: a systematic review and meta-analysis of prospective studies. J Am Acad Dermatol 45:520–527 [View Article] [PubMed]
    [Google Scholar]
  52. Gibson G. R., Probert H. M., Loo J. V., Rastall R. A., Roberfroid M. B. ( 2004). Dietary modulation of the human colonic microbiota: updating the concept of prebiotics. Nutr Res Rev 17:259–275 [View Article] [PubMed]
    [Google Scholar]
  53. Gnoth M. J., Kunz C., Kinne-Saffran E., Rudloff S. ( 2000). Human milk oligosaccharides are minimally digested in vitro. J Nutr 130:3014–3020 [PubMed]
    [Google Scholar]
  54. Gomes A. M., Malcata F. X., Klaver F. A. ( 1998). Growth enhancement of Bifidobacterium lactis Bo and Lactobacillus acidophilus Ki by milk hydrolyzates. J Dairy Sci 81:2817–2825 [View Article] [PubMed]
    [Google Scholar]
  55. González R., Klaassens E. S., Malinen E., de Vos W. M., Vaughan E. E. ( 2008). Differential transcriptional response of Bifidobacterium longum to human milk, formula milk, and galactooligosaccharide. Appl Environ Microbiol 74:4686–4694 [View Article] [PubMed]
    [Google Scholar]
  56. Gopal P. K., Gill H. S. ( 2000). Oligosaccharides and glycoconjugates in bovine milk and colostrum. Br J Nutr 84:Suppl. 1S69–S74 [View Article] [PubMed]
    [Google Scholar]
  57. Gordon J. I., Dewey K. G., Mills D. A., Medzhitov R. M. ( 2012). The human gut microbiota and undernutrition. Sci Transl Med 4:37ps12 [PubMed] [CrossRef]
    [Google Scholar]
  58. Grönlund M. M., Gueimonde M., Laitinen K., Kociubinski G., Grönroos T., Salminen S., Isolauri E. ( 2007). Maternal breast-milk and intestinal bifidobacteria guide the compositional development of the Bifidobacterium microbiota in infants at risk of allergic disease. Clin Exp Allergy 37:1764–1772 [View Article] [PubMed]
    [Google Scholar]
  59. Gustafsson B. E., Karlsson K. A., Larson G., Midtvedt T., Strömberg N., Teneberg S., Thurin J. ( 1986). Glycosphingolipid patterns of the gastrointestinal tract and feces of germ-free and conventional rats. J Biol Chem 261:15294–15300 [PubMed]
    [Google Scholar]
  60. Haarman M., Knol J. ( 2005). Quantitative real-time PCR assays to identify and quantify fecal Bifidobacterium species in infants receiving a prebiotic infant formula. Appl Environ Microbiol 71:2318–2324 [View Article] [PubMed]
    [Google Scholar]
  61. Hakkarainen J., Toivanen M., Leinonen A., Frängsmyr L., Strömberg N., Lapinjoki S., Nassif X., Tikkanen-Kaukanen C. ( 2005). Human and bovine milk oligosaccharides inhibit Neisseria meningitidis pili attachment in vitro. J Nutr 135:2445–2448 [PubMed]
    [Google Scholar]
  62. Hamosh M. ( 2001). Bioactive factors in human milk. Pediatr Clin North Am 48:69–86 [View Article] [PubMed]
    [Google Scholar]
  63. Harmsen H. J., Wildeboer-Veloo A. C., Raangs G. C., Wagendorp A. A., Klijn N., Bindels J. G., Welling G. W. ( 2000). Analysis of intestinal flora development in breast-fed and formula-fed infants by using molecular identification and detection methods. J Pediatr Gastroenterol Nutr 30:61–67 [View Article] [PubMed]
    [Google Scholar]
  64. Harris K., Kassis A., Major G., Chou C. J. ( 2012). Is the gut microbiota a new factor contributing to obesity and its metabolic disorders?. J Obes 2012:879151 [PubMed]
    [Google Scholar]
  65. Håversen L., Ohlsson B. G., Hahn-Zoric M., Hanson L. A., Mattsby-Baltzer I. ( 2002). Lactoferrin down-regulates the LPS-induced cytokine production in monocytic cells via NF-κB. Cell Immunol 220:83–95 [View Article] [PubMed]
    [Google Scholar]
  66. Hernell O. ( 2011). Human milk vs. cow’s milk and the evolution of infant formulas. Nestle Nutr Workshop Ser Pediatr Program 67:17–28 [View Article] [PubMed]
    [Google Scholar]
  67. Hong P., Ninonuevo M. R., Lee B., Lebrilla C., Bode L. ( 2009). Human milk oligosaccharides reduce HIV-1-gp120 binding to dendritic cell-specific ICAM3-grabbing non-integrin (DC-SIGN). Br J Nutr 101:482–486 [View Article] [PubMed]
    [Google Scholar]
  68. Hooper L. V., Littman D. R., Macpherson A. J. ( 2012). Interactions between the microbiota and the immune system. Science 336:1268–1273 [View Article] [PubMed]
    [Google Scholar]
  69. Hoskins L. C., Agustines M., McKee W. B., Boulding E. T., Kriaris M., Niedermeyer G. ( 1985). Mucin degradation in human colon ecosystems. Isolation and properties of fecal strains that degrade ABH blood group antigens and oligosaccharides from mucin glycoproteins. J Clin Invest 75:944–953 [View Article] [PubMed]
    [Google Scholar]
  70. Imberty A., Varrot A. ( 2008). Microbial recognition of human cell surface glycoconjugates. Curr Opin Struct Biol 18:567–576 [View Article] [PubMed]
    [Google Scholar]
  71. Jakobsson I., Lindberg T., Benediktsson B. ( 1982). In vitro digestion of cow’s milk proteins by duodenal juice from infants with various gastrointestinal disorders. J Pediatr Gastroenterol Nutr 1:183–192 [View Article] [PubMed]
    [Google Scholar]
  72. Janer C., Pelaez C., Requena T. ( 2004). Caseinomacropeptide and whey protein concentrate enhance Bifidobacterium lactis growth in milk. Food Chem 86:263–267 [View Article]
    [Google Scholar]
  73. Jensen R. G. ( 1999). Lipids in human milk. Lipids 34:1243–1271 [View Article] [PubMed]
    [Google Scholar]
  74. Jollès P., Jollès J. ( 1961). Lysozyme from human milk. Nature 192:1187–1188 [View Article] [PubMed]
    [Google Scholar]
  75. Jost T., Lacroix C., Braegger C. P., Chassard C. ( 2012). New insights in gut microbiota establishment in healthy breast fed neonates. PLoS ONE 7:e44595 [View Article] [PubMed]
    [Google Scholar]
  76. Kalliomäki M., Collado M. C., Salminen S., Isolauri E. ( 2008). Early differences in fecal microbiota composition in children may predict overweight. Am J Clin Nutr 87:534–538 [PubMed]
    [Google Scholar]
  77. Kitaoka M., Tian J., Nishimoto M. ( 2005). Novel putative galactose operon involving lacto-N-biose phosphorylase in Bifidobacterium longum . Appl Environ Microbiol 71:3158–3162 [View Article] [PubMed]
    [Google Scholar]
  78. Kiyohara M., Tanigawa K., Chaiwangsri T., Katayama T., Ashida H., Yamamoto K. ( 2011). An exo-α-sialidase from bifidobacteria involved in the degradation of sialyloligosaccharides in human milk and intestinal glycoconjugates. Glycobiology 21:437–447 [View Article] [PubMed]
    [Google Scholar]
  79. Kiyohara M., Nakatomi T., Kurihara S., Fushinobu S., Suzuki H., Tanaka T., Shoda S., Kitaoka M., Katayama T. & other authors ( 2012). α-N-Acetylgalactosaminidase from infant-associated bifidobacteria belonging to novel glycoside hydrolase family 129 is implicated in alternative mucin degradation pathway. J Biol Chem 287:693–700 [View Article] [PubMed]
    [Google Scholar]
  80. Koenig J. E., Spor A., Scalfone N., Fricker A. D., Stombaugh J., Knight R., Angenent L. T., Ley R. E. ( 2011). Succession of microbial consortia in the developing infant gut microbiome. Proc Natl Acad Sci U S A 108:Suppl. 14578–4585 [View Article] [PubMed]
    [Google Scholar]
  81. Koletzko B. ( 2010). Innovations in infant milk feeding: from the past to the future. Nestle Nutr Workshop Ser Pediatr Program 66:1–17 [View Article] [PubMed]
    [Google Scholar]
  82. Kunz C. ( 2012). Historical aspects of human milk oligosaccharides. Adv Nutr 3:430S–439S [PubMed] [CrossRef]
    [Google Scholar]
  83. Kunz C., Rudloff S., Baier W., Klein N., Strobel S. ( 2000). Oligosaccharides in human milk: structural, functional, and metabolic aspects. Annu Rev Nutr 20:699–722 [View Article] [PubMed]
    [Google Scholar]
  84. Laegreid A., Kolstø Otnaess A. B., Bryn K. ( 1986). Purification of human milk gangliosides by silica gel chromatography and analysis of trifluoroacetate derivatives by gas chromatography. J Chromatogr A 377:59–67 [PubMed] [CrossRef]
    [Google Scholar]
  85. Larson G., Midtvedt T. ( 1989). Glycosphingolipids in feces of germ-free rats as a source for studies of developmental changes of intestinal epithelial cell surface carbohydrates. Glycoconj J 6:285–292 [View Article] [PubMed]
    [Google Scholar]
  86. Larson G., Watsfeldt P., Falk P., Leffler H., Koprowski H. ( 1987). Fecal excretion of intestinal glycosphingolipids by newborns and young children. FEBS Lett 214:41–44 [View Article] [PubMed]
    [Google Scholar]
  87. Larson G., Falk P., Hoskins L. C. ( 1988). Degradation of human intestinal glycosphingolipids by extracellular glycosidases from mucin-degrading bacteria of the human fecal flora. J Biol Chem 263:10790–10798 [PubMed]
    [Google Scholar]
  88. Le T. T., Van de Wiele T., Do T. N., Debyser G., Struijs K., Devreese B., Dewettinck K., Van Camp J. ( 2012). Stability of milk fat globule membrane proteins toward human enzymatic gastrointestinal digestion. J Dairy Sci 95:2307–2318 [View Article] [PubMed]
    [Google Scholar]
  89. Le Huërou-Luron I., Blat S., Boudry G. ( 2010). Breast- v. formula-feeding: impacts on the digestive tract and immediate and long-term health effects. Nutr Res Rev 23:23–36 [View Article] [PubMed]
    [Google Scholar]
  90. Lee J. H., Karamychev V. N., Kozyavkin S. A., Mills D., Pavlov A. R., Pavlova N. V., Polouchine N. N., Richardson P. M., Shakhova V. V. & other authors ( 2008). Comparative genomic analysis of the gut bacterium Bifidobacterium longum reveals loci susceptible to deletion during pure culture growth. BMC Genomics 9:247 [View Article] [PubMed]
    [Google Scholar]
  91. Lee H., An H. J., Lerno L. A. Jr, German J. B., Lebrilla C. B. ( 2011). Rapid profiling of bovine and human milk gangliosides by matrix-assisted laser desorption/ionization Fourier transform ion cyclotron resonance mass spectrometry. Int J Mass Spectrom 305:138–150 [View Article] [PubMed]
    [Google Scholar]
  92. Ley R. E., Bäckhed F., Turnbaugh P., Lozupone C. A., Knight R. D., Gordon J. I. ( 2005). Obesity alters gut microbial ecology. Proc Natl Acad Sci U S A 102:11070–11075 [View Article] [PubMed]
    [Google Scholar]
  93. Lindberg A. A., Brown J. E., Strömberg N., Westling-Ryd M., Schultz J. E., Karlsson K. A. ( 1987). Identification of the carbohydrate receptor for Shiga toxin produced by Shigella dysenteriae type 1. J Biol Chem 262:1779–1785 [PubMed]
    [Google Scholar]
  94. Lindh E. ( 1975). Increased resistance of immunoglobulin A dimers to proteolytic degradation after binding of secretory component. J Immunol 114:284–286 [PubMed]
    [Google Scholar]
  95. Lindquist S., Hernell O. ( 2010). Lipid digestion and absorption in early life: an update. Curr Opin Clin Nutr Metab Care 13:314–320 [View Article] [PubMed]
    [Google Scholar]
  96. LoCascio R. G., Ninonuevo M. R., Freeman S. L., Sela D. A., Grimm R., Lebrilla C. B., Mills D. A., German J. B. ( 2007). Glycoprofiling of bifidobacterial consumption of human milk oligosaccharides demonstrates strain specific, preferential consumption of small chain glycans secreted in early human lactation. J Agric Food Chem 55:8914–8919 [View Article] [PubMed]
    [Google Scholar]
  97. LoCascio R. G., Niñonuevo M. R., Kronewitter S. R., Freeman S. L., German J. B., Lebrilla C. B., Mills D. A. ( 2009). A versatile and scalable strategy for glycoprofiling bifidobacterial consumption of human milk oligosaccharides. Microb Biotechnol 2:333–342 [View Article] [PubMed]
    [Google Scholar]
  98. LoCascio R. G., Desai P., Sela D. A., Weimer B., Mills D. A. ( 2010). Broad conservation of milk utilization genes in Bifidobacterium longum subsp. infantis as revealed by comparative genomic hybridization. Appl Environ Microbiol 76:7373–7381 [View Article] [PubMed]
    [Google Scholar]
  99. Lönnerdal B. ( 2009). Nutritional roles of lactoferrin. Curr Opin Clin Nutr Metab Care 12:293–297 [View Article] [PubMed]
    [Google Scholar]
  100. Lönnerdal B. ( 2010). Bioactive proteins in human milk: mechanisms of action. J Pediatr 156:Suppl.S26–S30 [View Article] [PubMed]
    [Google Scholar]
  101. Makino H., Kushiro A., Ishikawa E., Muylaert D., Kubota H., Sakai T., Oishi K., Martin R., Ben Amor K. & other authors ( 2011). Transmission of intestinal Bifidobacterium longum subsp. longum strains from mother to infant, determined by multilocus sequencing typing and amplified fragment length polymorphism. Appl Environ Microbiol 77:6788–6793 [View Article] [PubMed]
    [Google Scholar]
  102. Mangin I., Suau A., Magne F., Garrido D., Gotteland M., Neut C., Pochart P. ( 2006). Characterization of human intestinal bifidobacteria using competitive PCR and PCR-TTGE. FEMS Microbiol Ecol 55:28–37 [View Article] [PubMed]
    [Google Scholar]
  103. Marcobal A., Barboza M., Froehlich J. W., Block D. E., German J. B., Lebrilla C. B., Mills D. A. ( 2010). Consumption of human milk oligosaccharides by gut-related microbes. J Agric Food Chem 58:5334–5340 [View Article] [PubMed]
    [Google Scholar]
  104. Marcobal A., Barboza M., Sonnenburg E. D., Pudlo N., Martens E. C., Desai P., Lebrilla C. B., Weimer B. C., Mills D. A. & other authors ( 2011). Bacteroides in the infant gut consume milk oligosaccharides via mucus-utilization pathways. Cell Host Microbe 10:507–514 [View Article] [PubMed]
    [Google Scholar]
  105. Martens E. C., Roth R., Heuser J. E., Gordon J. I. ( 2009). Coordinate regulation of glycan degradation and polysaccharide capsule biosynthesis by a prominent human gut symbiont. J Biol Chem 284:18445–18457 [View Article] [PubMed]
    [Google Scholar]
  106. Martín-Sosa S., Martín M. J., Hueso P. ( 2002). The sialylated fraction of milk oligosaccharides is partially responsible for binding to enterotoxigenic and uropathogenic Escherichia coli human strains. J Nutr 132:3067–3072 [PubMed]
    [Google Scholar]
  107. Martirosian G., Kuipers S., Verbrugh H., van Belkum A., Meisel-Mikolajczyk F. ( 1995). PCR ribotyping and arbitrarily primed PCR for typing strains of Clostridium difficile from a Polish maternity hospital. J Clin Microbiol 33:2016–2021 [PubMed]
    [Google Scholar]
  108. Matsuki T., Watanabe K., Fujimoto J., Miyamoto Y., Takada T., Matsumoto K., Oyaizu H., Tanaka R. ( 2002). Development of 16S rRNA-gene-targeted group-specific primers for the detection and identification of predominant bacteria in human feces. Appl Environ Microbiol 68:5445–5451 [View Article] [PubMed]
    [Google Scholar]
  109. Mayer E. J., Hamman R. F., Gay E. C., Lezotte D. C., Savitz D. A., Klingensmith G. J. ( 1988). Reduced risk of IDDM among breast-fed children. The Colorado IDDM Registry. Diabetes 37:1625–1632 [View Article] [PubMed]
    [Google Scholar]
  110. Midtvedt T., Carlstedt-Duke B., Höverstad T., Midtvedt A. C., Norin K. E., Saxerholt H. ( 1987). Establishment of a biochemically active intestinal ecosystem in ex-germfree rats. Appl Environ Microbiol 53:2866–2871 [PubMed]
    [Google Scholar]
  111. Midtvedt A. C., Carlstedt-Duke B., Norin K. E., Saxerholt H., Midtvedt T. ( 1988). Development of five metabolic activities associated with the intestinal microflora of healthy infants. J Pediatr Gastroenterol Nutr 7:559–567 [View Article] [PubMed]
    [Google Scholar]
  112. Miller-Podraza H., Lanne B., Angström J., Teneberg S., Milh M. A., Jovall P. A., Karlsson H., Karlsson K. A. ( 2005). Novel binding epitope for Helicobacter pylori found in neolacto carbohydrate chains: structure and cross-binding properties. J Biol Chem 280:19695–19703 [View Article] [PubMed]
    [Google Scholar]
  113. Mitoulas L. R., Kent J. C., Cox D. B., Owens R. A., Sherriff J. L., Hartmann P. E. ( 2002). Variation in fat, lactose and protein in human milk over 24 h and throughout the first year of lactation. Br J Nutr 88:29–37 [View Article] [PubMed]
    [Google Scholar]
  114. Mitsou E. K., Kirtzalidou E., Oikonomou I., Liosis G., Kyriacou A. ( 2008). Fecal microflora of Greek healthy neonates. Anaerobe 14:94–101 [View Article] [PubMed]
    [Google Scholar]
  115. Miwa M., Horimoto T., Kiyohara M., Katayama T., Kitaoka M., Ashida H., Yamamoto K. ( 2010). Cooperation of β-galactosidase and β-N-acetylhexosaminidase from bifidobacteria in assimilation of human milk oligosaccharides with type 2 structure. Glycobiology 20:1402–1409 [View Article] [PubMed]
    [Google Scholar]
  116. Moro E. ( 1905). Morphologische und biologische Untersuchung über die Darmbakterien des Säuglings. Jahrb f Kinderh 61:687–734
    [Google Scholar]
  117. Morrow A. L., Ruiz-Palacios G. M., Altaye M., Jiang X., Guerrero M. L., Meinzen-Derr J. K., Farkas T., Chaturvedi P., Pickering L. K., Newburg D. S. ( 2004). Human milk oligosaccharide blood group epitopes and innate immune protection against Campylobacter and calicivirus diarrhea in breastfed infants. Adv Exp Med Biol 554:443–446 [PubMed]
    [Google Scholar]
  118. Morrow A. L., Ruiz-Palacios G. M., Jiang X., Newburg D. S. ( 2005). Human-milk glycans that inhibit pathogen binding protect breast-feeding infants against infectious diarrhea. J Nutr 135:1304–1307 [PubMed]
    [Google Scholar]
  119. Mukai T., Kaneko S., Matsumoto M., Ohori H. ( 2004). Binding of Bifidobacterium bifidum and Lactobacillus reuteri to the carbohydrate moieties of intestinal glycolipids recognized by peanut agglutinin. Int J Food Microbiol 90:357–362 [View Article] [PubMed]
    [Google Scholar]
  120. Neeser J. R., Granato D., Rouvet M., Servin A., Teneberg S., Karlsson K. A. ( 2000). Lactobacillus johnsonii La1 shares carbohydrate-binding specificities with several enteropathogenic bacteria. Glycobiology 10:1193–1199 [View Article] [PubMed]
    [Google Scholar]
  121. Neu J. ( 2007). Gastrointestinal development and meeting the nutritional needs of premature infants. Am J Clin Nutr 85:629S–634S [PubMed]
    [Google Scholar]
  122. Newburg D. S. ( 2009). Neonatal protection by an innate immune system of human milk consisting of oligosaccharides and glycans. J Anim Sci 87:Suppl.26–34 [View Article] [PubMed]
    [Google Scholar]
  123. Newburg D. S., Chaturvedi P. ( 1992). Neutral glycolipids of human and bovine milk. Lipids 27:923–927 [View Article] [PubMed]
    [Google Scholar]
  124. Newburg D. S., Ruiz-Palacios G. M., Altaye M., Chaturvedi P., Meinzen-Derr J., Guerrero M. L., Morrow A. L. ( 2004). Innate protection conferred by fucosylated oligosaccharides of human milk against diarrhea in breastfed infants. Glycobiology 14:253–263 [View Article] [PubMed]
    [Google Scholar]
  125. Newburg D. S., Ruiz-Palacios G. M., Morrow A. L. ( 2005). Human milk glycans protect infants against enteric pathogens. Annu Rev Nutr 25:37–58 [View Article] [PubMed]
    [Google Scholar]
  126. Nicholson J. K., Holmes E., Kinross J., Burcelin R., Gibson G., Jia W., Pettersson S. ( 2012). Host-gut microbiota metabolic interactions. Science 336:1262–1267 [View Article] [PubMed]
    [Google Scholar]
  127. Niñonuevo M. R., Perkins P. D., Francis J., Lamotte L. M., LoCascio R. G., Freeman S. L., Mills D. A., German J. B., Grimm R., Lebrilla C. B. ( 2008). Daily variations in oligosaccharides of human milk determined by microfluidic chips and mass spectrometry. J Agric Food Chem 56:618–626 [View Article] [PubMed]
    [Google Scholar]
  128. Nishimoto M., Kitaoka M. ( 2007). Identification of N-acetylhexosamine 1-kinase in the complete lacto-N-biose I/galacto-N-biose metabolic pathway in Bifidobacterium longum . Appl Environ Microbiol 73:6444–6449 [View Article] [PubMed]
    [Google Scholar]
  129. Nwosu C. C., Seipert R. R., Strum J. S., Hua S. S., An H. J., Zivkovic A. M., German B. J., Lebrilla C. B. ( 2011). Simultaneous and extensive site-specific N- and O-glycosylation analysis in protein mixtures. J Proteome Res 10:2612–2624 [View Article] [PubMed]
    [Google Scholar]
  130. Nwosu C. C., Aldredge D. L., Lee H., Lerno L. A., Zivkovic A. M., German J. B., Lebrilla C. B. ( 2012). Comparison of the human and bovine milk N-glycome via high-performance microfluidic chip liquid chromatography and tandem mass spectrometry. J Proteome Res 11:2912–2924 [View Article] [PubMed]
    [Google Scholar]
  131. O’Connell Motherway M., Fitzgerald G. F., van Sinderen D. ( 2011a). Metabolism of a plant derived galactose-containing polysaccharide by Bifidobacterium breve UCC2003. Microb Biotechnol 4:403–416 [View Article] [PubMed]
    [Google Scholar]
  132. O’Connell Motherway M., Zomer A., Leahy S. C., Reunanen J., Bottacini F., Claesson M. J., O’Brien F., Flynn K., Casey P. G. & other authors ( 2011b). Functional genome analysis of Bifidobacterium breve UCC2003 reveals type IVb tight adherence (Tad) pili as an essential and conserved host-colonization factor. Proc Natl Acad Sci U S A 108:11217–11222 [View Article] [PubMed]
    [Google Scholar]
  133. Otnaess A. B., Laegreid A., Ertresvåg K. ( 1983). Inhibition of enterotoxin from Escherichia coli and Vibrio cholerae by gangliosides from human milk. Infect Immun 40:563–569 [PubMed]
    [Google Scholar]
  134. Owen C. G., Martin R. M., Whincup P. H., Smith G. D., Cook D. G. ( 2006). Does breastfeeding influence risk of type 2 diabetes in later life? A quantitative analysis of published evidence. Am J Clin Nutr 84:1043–1054 [PubMed]
    [Google Scholar]
  135. Penders J., Thijs C., Vink C., Stelma F. F., Snijders B., Kummeling I., van den Brandt P. A., Stobberingh E. E. ( 2006). Factors influencing the composition of the intestinal microbiota in early infancy. Pediatrics 118:511–521 [View Article] [PubMed]
    [Google Scholar]
  136. Peterson J. A., Patton S., Hamosh M. ( 1998). Glycoproteins of the human milk fat globule in the protection of the breast-fed infant against infections. Biol Neonate 74:143–162 [View Article] [PubMed]
    [Google Scholar]
  137. Petherick A. ( 2010). Development: mother’s milk: a rich opportunity. Nature 468:S5–S7 [View Article] [PubMed]
    [Google Scholar]
  138. Petschow B. W., Talbott R. D. ( 1990). Growth promotion of Bifidobacterium species by whey and casein fractions from human and bovine milk. J Clin Microbiol 28:287–292 [PubMed]
    [Google Scholar]
  139. Pettitt D. J., Forman M. R., Hanson R. L., Knowler W. C., Bennett P. H. ( 1997). Breastfeeding and incidence of non-insulin-dependent diabetes mellitus in Pima Indians. Lancet 350:166–168 [View Article] [PubMed]
    [Google Scholar]
  140. Picciano M. F. ( 2001). Nutrient composition of human milk. Pediatr Clin North Am 48:53–67 [View Article] [PubMed]
    [Google Scholar]
  141. Polonowski M., Lespagnol A. ( 1931). Sur deux nouveaux sucres du lait de femme, le gynolactose et l’allolactose. C R Acad Sci 192:1319
    [Google Scholar]
  142. Prentice A., MacCarthy A., Stirling D. M., Vasquez-Velasquez L., Ceesay S. M. ( 1989). Breast-milk IgA and lactoferrin survival in the gastrointestinal tract – a study in rural Gambian children. Acta Paediatr Scand 78:505–512 [View Article] [PubMed]
    [Google Scholar]
  143. Reinhardt C., Reigstad C. S., Bäckhed F. ( 2009). Intestinal microbiota during infancy and its implications for obesity. J Pediatr Gastroenterol Nutr 48:249–256 [View Article] [PubMed]
    [Google Scholar]
  144. Roger L. C., McCartney A. L. ( 2010). Longitudinal investigation of the faecal microbiota of healthy full-term infants using fluorescence in situ hybridization and denaturing gradient gel electrophoresis. Microbiology 156:3317–3328 [View Article] [PubMed]
    [Google Scholar]
  145. Ruas-Madiedo P., Gueimonde M., Fernández-García M., de los Reyes-Gavilán C. G., Margolles A. ( 2008). Mucin degradation by Bifidobacterium strains isolated from the human intestinal microbiota. Appl Environ Microbiol 74:1936–1940 [View Article] [PubMed]
    [Google Scholar]
  146. Rudd P. M., Joao H. C., Coghill E., Fiten P., Saunders M. R., Opdenakker G., Dwek R. A. ( 1994). Glycoforms modify the dynamic stability and functional activity of an enzyme. Biochemistry 33:17–22 [View Article] [PubMed]
    [Google Scholar]
  147. Rudloff S., Kunz C. ( 2012). Milk oligosaccharides and metabolism in infants. Adv Nutr 3:398S–405S [PubMed] [CrossRef]
    [Google Scholar]
  148. Ruhaak L. R., Lebrilla C. B. ( 2012). Advances in analysis of human milk oligosaccharides. Adv Nutr 3:406S–414S [PubMed] [CrossRef]
    [Google Scholar]
  149. Ruiz-Palacios G. M., Cervantes L. E., Ramos P., Chavez-Munguia B., Newburg D. S. ( 2003). Campylobacter jejuni binds intestinal H(O) antigen (Fucα1, 2Galβ1, 4GlcNAc), and fucosyloligosaccharides of human milk inhibit its binding and infection. J Biol Chem 278:14112–14120 [View Article] [PubMed]
    [Google Scholar]
  150. Sakata S., Tonooka T., Ishizeki S., Takada M., Sakamoto M., Fukuyama M., Benno Y. ( 2005). Culture-independent analysis of fecal microbiota in infants, with special reference to Bifidobacterium species. FEMS Microbiol Lett 243:417–423 [View Article] [PubMed]
    [Google Scholar]
  151. Salvini F., Riva E., Salvatici E., Boehm G., Jelinek J., Banderali G., Giovannini M. ( 2011). A specific prebiotic mixture added to starting infant formula has long-lasting bifidogenic effects. J Nutr 141:1335–1339 [View Article] [PubMed]
    [Google Scholar]
  152. Schell M. A., Karmirantzou M., Snel B., Vilanova D., Berger B., Pessi G., Zwahlen M. C., Desiere F., Bork P. & other authors ( 2002). The genome sequence of Bifidobacterium longum reflects its adaptation to the human gastrointestinal tract. Proc Natl Acad Sci U S A 99:14422–14427 [View Article] [PubMed]
    [Google Scholar]
  153. Scholtens P. A., Oozeer R., Martin R., Amor K. B., Knol J. ( 2012). The early settlers: intestinal microbiology in early life. Annu Rev Food Sci Technol 3:425–447 [View Article] [PubMed]
    [Google Scholar]
  154. Sela D. A., Mills D. A. ( 2010). Nursing our microbiota: molecular linkages between bifidobacteria and milk oligosaccharides. Trends Microbiol 18:298–307 [View Article] [PubMed]
    [Google Scholar]
  155. Sela D. A., Chapman J., Adeuya A., Kim J. H., Chen F., Whitehead T. R., Lapidus A., Rokhsar D. S., Lebrilla C. B. & other authors ( 2008). The genome sequence of Bifidobacterium longum subsp. infantis reveals adaptations for milk utilization within the infant microbiome. Proc Natl Acad Sci U S A 105:18964–18969 [View Article] [PubMed]
    [Google Scholar]
  156. Sela D. A., Price N. P., Mills D. A. ( 2010). Metabolism of bifidobacteria. Bifidobacteria: Genomics and Molecular Aspects45–70 Mayo B., van Sinderen D. Norwich, UK: Caister Academic Press;
    [Google Scholar]
  157. Sela D. A., Li Y., Lerno L., Wu S., Marcobal A. M., German J. B., Chen X., Lebrilla C. B., Mills D. A. ( 2011). An infant-associated bacterial commensal utilizes breast milk sialyloligosaccharides. J Biol Chem 286:11909–11918 [View Article] [PubMed]
    [Google Scholar]
  158. Sela D. A., Garrido D., Lerno L., Wu S., Tan K., Eom H. J., Joachimiak A., Lebrilla C. B., Mills D. A. ( 2012). Bifidobacterium longum subsp. infantis ATCC 15697 α-fucosidases are active on fucosylated human milk oligosaccharides. Appl Environ Microbiol 78:795–803 [View Article] [PubMed]
    [Google Scholar]
  159. Snijders B. E., Thijs C., Dagnelie P. C., Stelma F. F., Mommers M., Kummeling I., Penders J., van Ree R., van den Brandt P. A. ( 2007). Breast-feeding duration and infant atopic manifestations, by maternal allergic status, in the first 2 years of life (KOALA study). J Pediatr 151:347–351, e1–e2 [View Article] [PubMed]
    [Google Scholar]
  160. Stanley P., Schachter H., Taniguchi N. ( 2009). N-Glycans. Essentials of Glycobiology, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  161. Strömberg N., Ryd M., Lindberg A. A., Karlsson K.-A. ( 1988). Studies on the binding of bacteria to glycolipids. Two species of Propionibacterium apparently recognize separate epitopes on lactose of lactosylceramide. FEBS Lett 232:193–198 [View Article] [PubMed]
    [Google Scholar]
  162. Sundekilde U. K., Barile D., Meyrand M., Poulsen N. A., Larsen L. B., Lebrilla C. B., German J. B., Bertram H. C. ( 2012). Natural variability in bovine milk oligosaccharides from Danish Jersey and Holstein-Friesian breeds. J Agric Food Chem 60:6188–6196 [View Article] [PubMed]
    [Google Scholar]
  163. Tao N., DePeters E. J., Freeman S., German J. B., Grimm R., Lebrilla C. B. ( 2008). Bovine milk glycome. J Dairy Sci 91:3768–3778 [View Article] [PubMed]
    [Google Scholar]
  164. Tao N., Wu S., Kim J., An H. J., Hinde K., Power M. L., Gagneux P., German J. B., Lebrilla C. B. ( 2011). Evolutionary glycomics: characterization of milk oligosaccharides in primates. J Proteome Res 10:1548–1557 [View Article] [PubMed]
    [Google Scholar]
  165. Taufik E., Fukuda K., Senda A., Saito T., Williams C., Tilden C., Eisert R., Oftedal O., Urashima T. ( 2012). Structural characterization of neutral and acidic oligosaccharides in the milks of strepsirrhine primates: greater galago, aye-aye, Coquerel’s sifaka and mongoose lemur. Glycoconj J 29:119–134 [View Article] [PubMed]
    [Google Scholar]
  166. Torres D. P. M., Gonçalves M. P. F., Teixeira J. A., Rodrigues L. R. ( 2010). Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Comprehensive Reviews in Food Science and Food Safety 9:438–454 [View Article]
    [Google Scholar]
  167. Totten S. M., Zivkovic A. M., Wu S., Ngyuen U., Freeman S. L., Ruhaak L. R., Darboe M. K., German J. B., Prentice A. M., Lebrilla C. B. ( 2012). Comprehensive profiles of human milk oligosaccharides yield highly sensitive and specific markers for determining secretor status in lactating mothers. J Proteome Res 11:6124–6133 [PubMed]
    [Google Scholar]
  168. Turroni F., Bottacini F., Foroni E., Mulder I., Kim J. H., Zomer A., Sánchez B., Bidossi A., Ferrarini A. & other authors ( 2010). Genome analysis of Bifidobacterium bifidum PRL2010 reveals metabolic pathways for host-derived glycan foraging. Proc Natl Acad Sci U S A 107:19514–19519 [View Article] [PubMed]
    [Google Scholar]
  169. Turroni F., Peano C., Pass D. A., Foroni E., Severgnini M., Claesson M. J., Kerr C., Hourihane J., Murray D. & other authors ( 2012). Diversity of bifidobacteria within the infant gut microbiota. PLoS ONE 7:e36957 [View Article] [PubMed]
    [Google Scholar]
  170. Urashima T., Asakuma S., Leo F., Fukuda K., Messer M., Oftedal O. T. ( 2012). The predominance of type I oligosaccharides is a feature specific to human breast milk. Adv Nutr 3:473S–482S [PubMed] [CrossRef]
    [Google Scholar]
  171. van Berkel P. H., Geerts M. E., van Veen H. A., Kooiman P. M., Pieper F. R., de Boer H. A., Nuijens J. H. ( 1995). Glycosylated and unglycosylated human lactoferrins both bind iron and show identical affinities towards human lysozyme and bacterial lipopolysaccharide, but differ in their susceptibilities towards tryptic proteolysis. Biochem J 312:107–114 [PubMed]
    [Google Scholar]
  172. Variyam E. P., Hoskins L. C. ( 1981). Mucin degradation in human colon ecosystems. Degradation of hog gastric mucin by fecal extracts and fecal cultures. Gastroenterology 81:751–758 [PubMed]
    [Google Scholar]
  173. Wada J., Ando T., Kiyohara M., Ashida H., Kitaoka M., Yamaguchi M., Kumagai H., Katayama T., Yamamoto K. ( 2008). Bifidobacterium bifidum lacto-N-biosidase, a critical enzyme for the degradation of human milk oligosaccharides with a type 1 structure. Appl Environ Microbiol 74:3996–4004 [View Article] [PubMed]
    [Google Scholar]
  174. Ward R. E., Niñonuevo M., Mills D. A., Lebrilla C. B., German J. B. ( 2006). In vitro fermentation of breast milk oligosaccharides by Bifidobacterium infantis and Lactobacillus gasseri . Appl Environ Microbiol 72:4497–4499 [View Article] [PubMed]
    [Google Scholar]
  175. Wright D. P., Rosendale D. I., Robertson A. M. ( 2000). Prevotella enzymes involved in mucin oligosaccharide degradation and evidence for a small operon of genes expressed during growth on mucin. FEMS Microbiol Lett 190:73–79 [View Article] [PubMed]
    [Google Scholar]
  176. Wu S., Tao N., German J. B., Grimm R., Lebrilla C. B. ( 2010). Development of an annotated library of neutral human milk oligosaccharides. J Proteome Res 9:4138–4151 [View Article] [PubMed]
    [Google Scholar]
  177. Wu S., Grimm R., German J. B., Lebrilla C. B. ( 2011). Annotation and structural analysis of sialylated human milk oligosaccharides. J Proteome Res 10:856–868 [View Article] [PubMed]
    [Google Scholar]
  178. Xanthou M., Bines J., Walker W. A. ( 1995). Human milk and intestinal host defense in newborns: an update. Adv Pediatr 42:171–208 [PubMed]
    [Google Scholar]
  179. Xiao J. Z., Takahashi S., Nishimoto M., Odamaki T., Yaeshima T., Iwatsuki K., Kitaoka M. ( 2010). Distribution of in vitro fermentation ability of lacto-N-biose I, a major building block of human milk oligosaccharides, in bifidobacterial strains. Appl Environ Microbiol 76:54–59 [View Article] [PubMed]
    [Google Scholar]
  180. Yamamoto K., Miwa T., Taniguchi H., Nagano T., Shimamura K., Tanaka T., Kumagai H. ( 1996). Binding specificity of Lactobacillus to glycolipids. Biochem Biophys Res Commun 228:148–152 [View Article] [PubMed]
    [Google Scholar]
  181. Yatsunenko T., Rey F. E., Manary M. J., Trehan I., Dominguez-Bello M. G., Contreras M., Magris M., Hidalgo G., Baldassano R. N. & other authors ( 2012). Human gut microbiome viewed across age and geography. Nature 486:222–227 [PubMed]
    [Google Scholar]
  182. Ye A., Cui J., Singh H. ( 2011). Proteolysis of milk fat globule membrane proteins during in vitro gastric digestion of milk. J Dairy Sci 94:2762–2770 [View Article] [PubMed]
    [Google Scholar]
  183. Yoshida E., Sakurama H., Kiyohara M., Nakajima M., Kitaoka M., Ashida H., Hirose J., Katayama T., Yamamoto K., Kumagai H. ( 2012). Bifidobacterium longum subsp. infantis uses two different β-galactosidases for selectively degrading type-1 and type-2 human milk oligosaccharides. Glycobiology 22:361–368 [View Article] [PubMed]
    [Google Scholar]
  184. Yu T., Guo C., Wang J., Hao P., Sui S., Chen X., Zhang R., Wang P., Yu G. & other authors ( 2011). Comprehensive characterization of the site-specific N-glycosylation of wild-type and recombinant human lactoferrin expressed in the milk of transgenic cloned cattle. Glycobiology 21:206–224 [View Article] [PubMed]
    [Google Scholar]
  185. Zivkovic A. M., Barile D. ( 2011). Bovine milk as a source of functional oligosaccharides for improving human health. Adv Nutr 2:284–289 [PubMed] [CrossRef]
    [Google Scholar]
  186. Zivkovic A. M., German J. B., Lebrilla C. B., Mills D. A. ( 2011). Human milk glycobiome and its impact on the infant gastrointestinal microbiota. Proc Natl Acad Sci U S A 108:Suppl. 14653–4658 [View Article] [PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.064113-0
Loading
/content/journal/micro/10.1099/mic.0.064113-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error