1887

Abstract

The genus comprises a genetically distinct taxon related to other members of the family . It consists of bacteria differing strongly in their biochemical and physiological features, natural habitats, and pathogenic properties. Intrinsic resistance to cationic antimicrobial peptides (CAMPs) is a specific property of the genus In particular, , an important pathogen of the catfish () aquaculture and the causative agent of a fatal systemic infection, is highly resistant to CAMPs. mechanisms of resistance to CAMPs are unknown. We hypothesized that lipopolysaccharide (LPS) plays a role in both virulence and resistance to CAMPs. The putative genes related to LPS oligo-polysaccharide (O-PS) synthesis were in-frame deleted. Individual deletions of , and eliminated synthesis of the O-PS, causing auto-agglutination, rough colonies, biofilm-like formation and motility defects. Deletion of , the gene that encodes the UDP-glucose dehydrogenase enzyme responsible for synthesis of UDP-glucuronic acid, causes sensitivity to CAMPs, indicating that UDP-glucuronic acid and its derivatives are related to CAMP intrinsic resistance. OP-S mutants showed different levels of attenuation, colonization of lymphoid tissues and immune protection in zebrafish () and catfish. Orally inoculated catfish with O-PS mutant strains presented different degrees of gut inflammation and colonization of lymphoid tissues. Here we conclude that intrinsic resistance to CAMPs is mediated by Ugd enzyme, which has a pleiotropic effect in influencing LPS synthesis, motility, agglutination, fish gut inflammation and virulence.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.066639-0
2013-07-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1471.html?itemId=/content/journal/micro/10.1099/mic.0.066639-0&mimeType=html&fmt=ahah

References

  1. Aguirre A., Lejona S., Véscovi E. G., Soncini F. C. ( 2000). Phosphorylated PmrA interacts with the promoter region of ugd in Salmonella enterica serovar typhimurium. J Bacteriol 182:3874–3876 [View Article][PubMed]
    [Google Scholar]
  2. Ali S. A., Sarto I., Steinkasserer A. ( 1997). Production of PCR mimics for any semiquantitative PCR application. Biotechniques 22:1060–1062[PubMed]
    [Google Scholar]
  3. Bader M. W., Sanowar S., Daley M. E., Schneider A. R., Cho U., Xu W., Klevit R. E., Le Moual H., Miller S. I. ( 2005). Recognition of antimicrobial peptides by a bacterial sensor kinase. Cell 122:461–472 [View Article][PubMed]
    [Google Scholar]
  4. Banemann A., Deppisch H., Gross R. ( 1998). The lipopolysaccharide of Bordetella bronchiseptica acts as a protective shield against antimicrobial peptides. Infect Immun 66:5607–5612[PubMed]
    [Google Scholar]
  5. Bao B., Peatman E., Li P., He C., Liu Z. ( 2005). Catfish hepcidin gene is expressed in a wide range of tissues and exhibits tissue-specific upregulation after bacterial infection. Dev Comp Immunol 29:939–950 [View Article][PubMed]
    [Google Scholar]
  6. Bao B., Peatman E., Xu P., Li P., Zeng H., He C., Liu Z. ( 2006). The catfish liver-expressed antimicrobial peptide 2 (LEAP-2) gene is expressed in a wide range of tissues and developmentally regulated. Mol Immunol 43:367–377 [View Article][PubMed]
    [Google Scholar]
  7. Berczi I., Bertók L., Bereznai T. ( 1966). Comparative studies on the toxicity of Escherichia coli lipopolysaccharide endotoxin in various animal species. Can J Microbiol 12:1070–1071 [View Article][PubMed]
    [Google Scholar]
  8. Bertani G. ( 1951). Studies on lysogenesis. I. The mode of phage liberation by lysogenic Escherichia coli . J Bacteriol 62:293–300[PubMed]
    [Google Scholar]
  9. Bertolini J. M., Cipriano R. C., Pyle S. W., McLaughlin J. J. ( 1990). Serological investigation of the fish pathogen Edwardsiella ictaluri, cause of enteric septicemia of catfish. J Wildl Dis 26:246–252[PubMed] [CrossRef]
    [Google Scholar]
  10. Bly J. E., Clem L. W. ( 1991). Temperature-mediated processes in teleost immunity: in vitro immunosuppression induced by in vivo low temperature in channel catfish. Vet Immunol Immunopathol 28:365–377 [View Article][PubMed]
    [Google Scholar]
  11. Booth N. J., Beekman J. B., Thune R. L. ( 2009). Edwardsiella ictaluri encodes an acid-activated urease that is required for intracellular replication in channel catfish (Ictalurus punctatus) macrophages. Appl Environ Microbiol 75:6712–6720 [View Article][PubMed]
    [Google Scholar]
  12. Bowser P. R., Plumb J. A. ( 1980). Fish cell lines: establishment of a line from ovaries of channel catfish. In Vitro 16:365–368 [View Article][PubMed]
    [Google Scholar]
  13. Breazeale S. D., Ribeiro A. A., Raetz C. R. ( 2002). Oxidative decarboxylation of UDP-glucuronic acid in extracts of polymyxin-resistant Escherichia coli. Origin of lipid A species modified with 4-amino-4-deoxy-l-arabinose. J Biol Chem 277:2886–2896 [View Article][PubMed]
    [Google Scholar]
  14. Brogden K. A. ( 2005). Antimicrobial peptides: pore formers or metabolic inhibitors in bacteria?. Nat Rev Microbiol 3:238–250 [View Article][PubMed]
    [Google Scholar]
  15. Chakraborty S., Li M., Chatterjee C., Sivaraman J., Leung K. Y., Mok Y. K. ( 2010). Temperature and Mg2+ sensing by a novel PhoP-PhoQ two-component system for regulation of virulence in Edwardsiella tarda . J Biol Chem 285:38876–38888 [View Article][PubMed]
    [Google Scholar]
  16. Chandler D. E., Roberson R. W. ( 2009). Bioimaging: Current Concepts in Light and Electron Microscopy Sudbury, MA: Jones and Bartlett Publishers;
    [Google Scholar]
  17. Clerton P., Troutaud D., Deschaux P. ( 1998). The chemiluminescence response of leucocytes isolated from the gut of rainbow trout (Oncorhynchus mykiss). Fish Shellfish Immunol 8:73–76 [View Article]
    [Google Scholar]
  18. CLSI, Clinical and Laboratory Standards Institute. (2005a).
  19. CLSI, Clinical and Laboratory Standards Institute. (2005b).
  20. De Soyza A., Ellis C. D., Khan C. M., Corris P. A., Demarco de Hormaeche R. ( 2004). Burkholderia cenocepacia lipopolysaccharide, lipid A, and proinflammatory activity. Am J Respir Crit Care Med 170:70–77 [View Article][PubMed]
    [Google Scholar]
  21. Dunham R. A., Warr G. W., Nichols A., Duncan P. L., Argue B., Middleton D., Kucuktas H. ( 2002). Enhanced bacterial disease resistance of transgenic channel catfish Ictalurus punctatus possessing cecropin genes. Mar Biotechnol (NY) 4:338–344 [View Article][PubMed]
    [Google Scholar]
  22. Edwards R. A., Keller L. H., Schifferli D. M. ( 1998). Improved allelic exchange vectors and their use to analyze 987P fimbria gene expression. Gene 207:149–157 [View Article][PubMed]
    [Google Scholar]
  23. Ernst R. K., Guina T., Miller S. I. ( 1999). How intracellular bacteria survive: surface modifications that promote resistance to host innate immune responses. J Infect Dis 179:Suppl 2S326–S330 [View Article][PubMed]
    [Google Scholar]
  24. Farnaud S., Spiller C., Moriarty L. C., Patel A., Gant V., Odell E. W., Evans R. W. ( 2004). Interactions of lactoferricin-derived peptides with LPS and antimicrobial activity. FEMS Microbiol Lett 233:193–199 [View Article][PubMed]
    [Google Scholar]
  25. Ganz T. ( 2003). The role of antimicrobial peptides in innate immunity. Integr Comp Biol 43:300–304 [View Article][PubMed]
    [Google Scholar]
  26. Gunn J. S., Hohmann E. L., Miller S. I. ( 1996). Transcriptional regulation of Salmonella virulence: a PhoQ periplasmic domain mutation results in increased net phosphotransfer to PhoP. J Bacteriol 178:6369–6373[PubMed]
    [Google Scholar]
  27. Guo L., Lim K. B., Gunn J. S., Bainbridge B., Darveau R. P., Hackett M., Miller S. I. ( 1997). Regulation of lipid A modifications by Salmonella typhimurium virulence genes phoP-phoQ . Science 276:250–253 [View Article][PubMed]
    [Google Scholar]
  28. Guo L., Lim K. B., Poduje C. M., Daniel M., Gunn J. S., Hackett M., Miller S. I. ( 1998). Lipid A acylation and bacterial resistance against vertebrate antimicrobial peptides. Cell 95:189–198 [View Article][PubMed]
    [Google Scholar]
  29. Helander I. M., Kilpeläinen I., Vaara M. ( 1994). Increased substitution of phosphate groups in lipopolysaccharides and lipid A of the polymyxin-resistant pmrA mutants of Salmonella typhimurium: a 31P-NMR study. Mol Microbiol 11:481–487 [View Article][PubMed]
    [Google Scholar]
  30. Hitchcock P. J., Brown T. M. ( 1983). Morphological heterogeneity among Salmonella lipopolysaccharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol 154:269–277[PubMed]
    [Google Scholar]
  31. Iliev D. B., Roach J. C., Mackenzie S., Planas J. V., Goetz F. W. ( 2005). Endotoxin recognition: in fish or not in fish?. FEBS Lett 579:6519–6528 [View Article][PubMed]
    [Google Scholar]
  32. Kato A., Latifi T., Groisman E. A. ( 2003). Closing the loop: the PmrA/PmrB two-component system negatively controls expression of its posttranscriptional activator PmrD. Proc Natl Acad Sci U S A 100:4706–4711 [View Article][PubMed]
    [Google Scholar]
  33. Knirel Y. A., Dentovskaya S. V., Bystrova O. V., Kocharova N. A., Senchenkova S. N., Shaikhutdinova R. Z., Titareva G. M., Bakhteeva I. V., Lindner B. et al. ( 2007). Relationship of the lipopolysaccharide structure of Yersinia pestis to resistance to antimicrobial factors. Adv Exp Med Biol 603:88–96 [View Article][PubMed]
    [Google Scholar]
  34. Kox L. F., Wösten M. M., Groisman E. A. ( 2000). A small protein that mediates the activation of a two-component system by another two-component system. EMBO J 19:1861–1872 [View Article][PubMed]
    [Google Scholar]
  35. Lawrence M. L., Banes M. M., Azadi P., Reeks B. Y. ( 2003). The Edwardsiella ictaluri O polysaccharide biosynthesis gene cluster and the role of O polysaccharide in resistance to normal catfish serum and catfish neutrophils. Microbiology 149:1409–1421 [View Article][PubMed]
    [Google Scholar]
  36. Llobet E., Tomás J. M., Bengoechea J. A. ( 2008). Capsule polysaccharide is a bacterial decoy for antimicrobial peptides. Microbiology 154:3877–3886 [View Article][PubMed]
    [Google Scholar]
  37. Lv Y., Zheng J., Yang M., Wang Q., Zhang Y. ( 2012). An Edwardsiella tarda mutant lacking UDP-glucose dehydrogenase shows pleiotropic phenotypes, attenuated virulence, and potential as a vaccine candidate. Vet Microbiol 160:506–512 [View Article][PubMed]
    [Google Scholar]
  38. McPhee J. B., Lewenza S., Hancock R. E. ( 2003). Cationic antimicrobial peptides activate a two-component regulatory system, PmrA-PmrB, that regulates resistance to polymyxin B and cationic antimicrobial peptides in Pseudomonas aeruginosa . Mol Microbiol 50:205–217 [View Article][PubMed]
    [Google Scholar]
  39. Merkle R. K., Poppe I. ( 1994). Carbohydrate composition analysis of glycoconjugates by gas-liquid chromatography/mass spectrometry. Methods Enzymol 230:1–15 [View Article][PubMed]
    [Google Scholar]
  40. Muyembe T., Vandepitte J., Desmyter J. ( 1973). Natural colistin resistance in Edwardsiella tarda . Antimicrob Agents Chemother 4:521–524 [View Article][PubMed]
    [Google Scholar]
  41. Nummila K., Kilpeläinen I., Zähringer U., Vaara M., Helander I. M. ( 1995). Lipopolysaccharides of polymyxin B-resistant mutants of Escherichia coli are extensively substituted by 2-aminoethyl pyrophosphate and contain aminoarabinose in lipid A. Mol Microbiol 16:271–278 [View Article][PubMed]
    [Google Scholar]
  42. Ortega X. P., Cardona S. T., Brown A. R., Loutet S. A., Flannagan R. S., Campopiano D. J., Govan J. R., Valvano M. A. ( 2007). A putative gene cluster for aminoarabinose biosynthesis is essential for Burkholderia cenocepacia viability. J Bacteriol 189:3639–3644 [View Article][PubMed]
    [Google Scholar]
  43. Panangala V. S., Russo R., van Santen V. L., Wolfe K. G., Klesius P. H. ( 2009). Organization and sequence of four flagellin-encoding genes of Edwardsiella ictaluri . Aquaculture Res 40:1135–1147 [View Article]
    [Google Scholar]
  44. Patrzykat A., Friedrich C. L., Zhang L., Mendoza V., Hancock R. E. ( 2002). Sublethal concentrations of pleurocidin-derived antimicrobial peptides inhibit macromolecular synthesis in Escherichia coli . Antimicrob Agents Chemother 46:605–614 [View Article][PubMed]
    [Google Scholar]
  45. Peschel A., Sahl H. G. ( 2006). The co-evolution of host cationic antimicrobial peptides and microbial resistance. Nat Rev Microbiol 4:529–536 [View Article][PubMed]
    [Google Scholar]
  46. Petrie-Hanson L., Romano C. L., Mackey R. B., Khosravi P., Hohn C. M., Boyle C. R. ( 2007). Evaluation of zebrafish Danio rerio as a model for enteric septicemia of catfish (ESC). J Aquat Anim Health 19:151–158 [View Article][PubMed]
    [Google Scholar]
  47. Pohlenz C., Buentello A., Mwangi W., Gatlin D. M. III ( 2012). Arginine and glutamine supplementation to culture media improves the performance of various channel catfish immune cells. Fish Shellfish Immunol 32:762–768 [View Article][PubMed]
    [Google Scholar]
  48. Pridgeon J. W., Mu X., Klesius P. H. ( 2012). Expression profiles of seven channel catfish antimicrobial peptides in response to Edwardsiella ictaluri infection. J Fish Dis 35:227–237 [View Article][PubMed]
    [Google Scholar]
  49. Raetz C. R., Whitfield C. ( 2002). Lipopolysaccharide endotoxins. Annu Rev Biochem 71:635–700 [View Article][PubMed]
    [Google Scholar]
  50. Raetz C. R., Guan Z., Ingram B. O., Six D. A., Song F., Wang X., Zhao J. ( 2009). Discovery of new biosynthetic pathways: the lipid A story. J Lipid Res 50:SupplS103–S108 [View Article][PubMed]
    [Google Scholar]
  51. Raetzsch C. F., Brooks N. L., Alderman J. M., Moore K. S., Hosick P. A., Klebanov S., Akira S., Bear J. E., Baldwin A. S. et al. ( 2009). Lipopolysaccharide inhibition of glucose production through the Toll-like receptor-4, myeloid differentiation factor 88, and nuclear factor κb pathway. Hepatology 50:592–600 [View Article][PubMed]
    [Google Scholar]
  52. Rebeil R., Ernst R. K., Gowen B. B., Miller S. I., Hinnebusch B. J. ( 2004). Variation in lipid A structure in the pathogenic yersiniae. Mol Microbiol 52:1363–1373 [View Article][PubMed]
    [Google Scholar]
  53. Reinhardt J. F., Fowlston S., Jones J., George W. L. ( 1985). Comparative in vitro activities of selected antimicrobial agents against Edwardsiella tarda . Antimicrob Agents Chemother 27:966–967 [View Article][PubMed]
    [Google Scholar]
  54. Roland K., Curtiss R. III, Sizemore D. ( 1999). Construction and evaluation of a Δcya Δcrp Salmonella typhimurium strain expressing avian pathogenic Escherichia coli O78 LPS as a vaccine to prevent airsacculitis in chickens. Avian Dis 43:429–441 [View Article][PubMed]
    [Google Scholar]
  55. Santander, J. & Curtiss, R., III (2010).Edwardsiella ictaluri6th International Symposium on Aquatic Animal Health http://aquaticpath.phhp.ufl.edu/isaah6/Oral.html#S11
  56. Santander J., Wanda S. Y., Nickerson C. A., Curtiss R. III ( 2007). Role of RpoS in fine-tuning the synthesis of Vi capsular polysaccharide in Salmonella enterica serotype Typhi. Infect Immun 75:1382–1392 [View Article][PubMed]
    [Google Scholar]
  57. Santander J., Xin W., Yang Z., Curtiss R. III ( 2010). The aspartate-semialdehyde dehydrogenase of Edwardsiella ictaluri and its use as balanced-lethal system in fish vaccinology. PLoS ONE 5:e15944 [View Article][PubMed]
    [Google Scholar]
  58. Santander J., Mitra A., Curtiss R. III ( 2011). Phenotype, virulence and immunogenicity of Edwardsiella ictaluri cyclic adenosine 3′,5′-monophosphate receptor protein (Crp) mutants in catfish host. Fish Shellfish Immunol 31:1142–1153 [View Article][PubMed]
    [Google Scholar]
  59. Santander J., Golden G., Wanda S. Y., Curtiss R. III ( 2012). Fur-regulated iron uptake system of Edwardsiella ictaluri and its influence on pathogenesis and immunogenicity in the catfish host. Infect Immun 80:2689–2703 [View Article][PubMed]
    [Google Scholar]
  60. Secombes C. J. ( 1990) Isolation of salmonid macrophages and analysis of their killing activity. Techniques in Fish Immunology137e54 Stolen J. S., Fletcher T. C., Anderson D. P., Roberson B. S., van Muiswinkel W. B. Fair Haven, NJ: SOS Publications;
    [Google Scholar]
  61. Shoemaker C. A., Klesius P. H., Plumb J. A. ( 1997). Killing of Edwardsiella ictaluri by macrophages from channel catfish immune and susceptible to enteric septicemia of catfish. Vet Immunol Immunopathol 58:181–190 [View Article][PubMed]
    [Google Scholar]
  62. Shoemaker C. A., Klesius P. H., Arias C. R., Evans J. J. ( 2009) Uses of modified live vaccines in the aquaculture. J World Aqua Soc 5:573e85
    [Google Scholar]
  63. Shotts E. B., Waltman W. D. II ( 1990). A medium for the selective isolation of Edwardsiella ictaluri . J Wildl Dis 26:214–218[PubMed] [CrossRef]
    [Google Scholar]
  64. Silipo A., Molinaro A., Cescutti P., Bedini E., Rizzo R., Parrilli M., Lanzetta R. ( 2005). Complete structural characterization of the lipid A fraction of a clinical strain of B. cepacia genomovar I lipopolysaccharide. Glycobiology 15:561–570 [View Article][PubMed]
    [Google Scholar]
  65. Sizemore D. R., Elsinghorst E. A., Eck L. C., Branstrom A. A., Hoover D. L., Warren R. L., Rubin F. A. ( 1997). Interaction of Salmonella typhi strains with cultured human monocyte-derived macrophages. Infect Immun 65:309–312[PubMed]
    [Google Scholar]
  66. Skurnik M., Venho R., Bengoechea J. A., Moriyón I. ( 1999). The lipopolysaccharide outer core of Yersinia enterocolitica serotype O : 3 is required for virulence and plays a role in outer membrane integrity. Mol Microbiol 31:1443–1462 [View Article][PubMed]
    [Google Scholar]
  67. Stock I., Wiedemann B. ( 2001). Natural antibiotic susceptibilities of Edwardsiella tarda, E. ictaluri, and E. hoshinae . Antimicrob Agents Chemother 45:2245–2255 [View Article][PubMed]
    [Google Scholar]
  68. Strominger J. L. ( 1957). Microbial uridine-5′-pyrophosphate N-acetylamino sugar compounds. I. Biology of the penicillin-induced accumulation. J Biol Chem 224:509–523[PubMed]
    [Google Scholar]
  69. Swain P., Nayak S. K., Nanda P. K., Dash S. ( 2008). Biological effects of bacterial lipopolysaccharide (endotoxin) in fish: a review. Fish Shellfish Immunol 25:191–201 [View Article][PubMed]
    [Google Scholar]
  70. Tatner M. F., Horne M. T. ( 1983). Susceptibility and immunity to Vibrio anguillarum in post-hatching rainbow trout fry, Salmo gairdneri Richardson 1836. Dev Comp Immunol 7:465–472 [View Article][PubMed]
    [Google Scholar]
  71. Tran A. X., Lester M. E., Stead C. M., Raetz C. R., Maskell D. J., McGrath S. C., Cotter R. J., Trent M. S. ( 2005). Resistance to the antimicrobial peptide polymyxin requires myristoylation of Escherichia coli and Salmonella typhimurium lipid A. J Biol Chem 280:28186–28194 [View Article][PubMed]
    [Google Scholar]
  72. Trent M. S., Ribeiro A. A., Lin S., Cotter R. J., Raetz C. R. ( 2001). An inner membrane enzyme in Salmonella and Escherichia coli that transfers 4-amino-4-deoxy-l-arabinose to lipid A: induction on polymyxin-resistant mutants and role of a novel lipid-linked donor. J Biol Chem 276:43122–43131 [View Article][PubMed]
    [Google Scholar]
  73. Tsai C. M., Frasch C. E. ( 1982). A sensitive silver stain for detecting lipopolysaccharides in polyacrylamide gels. Anal Biochem 119:115–119 [View Article][PubMed]
    [Google Scholar]
  74. Vaara M., Vaara T., Jensen M., Helander I., Nurminen M., Rietschel E. T., Mäkelä P. H. ( 1981). Characterization of the lipopolysaccharide from the polymyxin-resistant pmrA mutants of Salmonella typhimurium . FEBS Lett 129:145–149 [View Article][PubMed]
    [Google Scholar]
  75. Vinogradov E., Nossova L., Perry M. B., Kay W. W. ( 2005). The structure of the antigenic O-polysaccharide of the lipopolysaccharide of Edwardsiella ictaluri strain MT104. Carbohydr Res 340:1509–1513 [View Article][PubMed]
    [Google Scholar]
  76. Wang Q., Wang Y., Xu P., Liu Z. ( 2006). NK-lysin of channel catfish: gene triplication, sequence variation, and expression analysis. Mol Immunol 43:1676–1686 [View Article][PubMed]
    [Google Scholar]
  77. Whitfield C. ( 2006). Biosynthesis and assembly of capsular polysaccharides in Escherichia coli . Annu Rev Biochem 75:39–68 [View Article][PubMed]
    [Google Scholar]
  78. Winfield M. D., Latifi T., Groisman E. A. ( 2005). Transcriptional regulation of the 4-amino-4-deoxy-l-arabinose biosynthetic genes in Yersinia pestis . J Biol Chem 280:14765–14772 [View Article][PubMed]
    [Google Scholar]
  79. Wösten M. M., Groisman E. A. ( 1999). Molecular characterization of the PmrA regulon. J Biol Chem 274:27185–27190 [View Article][PubMed]
    [Google Scholar]
  80. Xu P., Bao B., He Q., Peatman E., He C., Liu Z. ( 2005). Characterization and expression analysis of bactericidal permeability-increasing protein (BPI) antimicrobial peptide gene from channel catfish Ictalurus punctatus . Dev Comp Immunol 29:865–878 [View Article][PubMed]
    [Google Scholar]
  81. Yi E. C., Hackett M. ( 2000). Rapid isolation method for lipopolysaccharide and lipid A from gram-negative bacteria. Analyst (Lond) 125:651–656 [View Article][PubMed]
    [Google Scholar]
  82. Zanetti M. ( 2004). Cathelicidins, multifunctional peptides of the innate immunity. J Leukoc Biol 75:39–48 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.066639-0
Loading
/content/journal/micro/10.1099/mic.0.066639-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error