1887

Abstract

In actinobacteria, resuscitation promoting factor (Rpf) proteins have been described as having the ability to increase the viable count of dormant cultures and stimulate growth of vegetative cells through lag phase reduction. Recently, it was suggested that proteins Lmo0186 and Lmo2522 of are equivalent to Rpf proteins based on their genomic context and conserved domain architecture. It was proposed that they have evolved through non-orthologous displacement of the Rpf domain found in actinobacteria. Here we present biological and biochemical data supporting a function of Lmo0186 and Lmo2522 as Rpfs. These proteins are collectively dispensable for growth but a double mutant exhibits an extended lag phase when diluted in minimal medium. This phenotype could be partially complemented by medium supplementation with fM to nM concentrations of purified hexahistidine-tagged versions of Lmo0186 and Lmo2522, showing that these proteins can stimulate growth. Gel filtration analysis and cross-linking experiments suggest that the recombinant proteins in solution are elongated monomers. Both proteins display muralytic activity against crude cell wall preparations and are active against an artificial lysozyme substrate. Our study thus supports the hypothesis that Lmo0186 and Lmo2522 are functional equivalents of actinobacteria Rpf proteins and represents the first characterization of two Rpf homologues from firmicutes.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.067850-0
2013-07-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/7/1390.html?itemId=/content/journal/micro/10.1099/mic.0.067850-0&mimeType=html&fmt=ahah

References

  1. Aubry C., Goulard C., Nahori M.-A., Cayet N., Decalf J., Sachse M., Boneca I. G., Cossart P., Dussurget O.( 2011). OatA, a peptidoglycan O-acetyltransferase involved in Listeria monocytogenes immune escape, is critical for virulence. J Infect Dis 204:731–740 [View Article][PubMed]
    [Google Scholar]
  2. Bateman A., Holden M. T. G., Yeats C.( 2005). The G5 domain: a potential N-acetylglucosamine recognition domain involved in biofilm formation. Bioinformatics 21:1301–1303 [View Article][PubMed]
    [Google Scholar]
  3. Besnard V., Federighi M., Cappelier J. M.( 2000a). Development of a direct viable count procedure for the investigation of VBNC state in Listeria monocytogenes.. Lett Appl Microbiol 31:77–81 [View Article][PubMed]
    [Google Scholar]
  4. Besnard V., Federighi M., Cappelier J. M.( 2000b). Evidence of viable but non-culturable state in Listeria monocytogenes by direct viable count and CTC-DAPI double staining. Food Microbiol 17:697–704 [View Article]
    [Google Scholar]
  5. Besnard V., Federighi M., Declerq E., Jugiau F., Cappelier J. M.( 2002). Environmental and physico-chemical factors induce VBNC state in Listeria monocytogenes. Vet Res 33:359–370 [View Article][PubMed]
    [Google Scholar]
  6. Biketov S., Potapov V., Ganina E., Downing K., Kana B. D., Kaprelyants A.( 2007). The role of resuscitation promoting factors in pathogenesis and reactivation of Mycobacterium tuberculosis during intra-peritoneal infection in mice. BMC Infect Dis 7:146 [View Article][PubMed]
    [Google Scholar]
  7. Boneca I. G., Dussurget O., Cabanes D., Nahori M. A., Sousa S., Lecuit M., Psylinakis E., Bouriotis V., Hugot J. P. et al.( 2007). A critical role for peptidoglycan N-deacetylation in Listeria evasion from the host innate immune system. Proc Natl Acad Sci U S A 104:997–1002 [View Article][PubMed]
    [Google Scholar]
  8. Buist G., Steen A., Kok J., Kuipers O. P.( 2008). LysM, a widely distributed protein motif for binding to (peptido)glycans. Mol Microbiol 68:838–847 [View Article][PubMed]
    [Google Scholar]
  9. Cabré F., Canela E. I., Canela M. A.( 1989). Accuracy and precision in the determination of Stokes radii and molecular masses of proteins by gel filtration chromatography. J Chromatogr A 472:347–356 [View Article][PubMed]
    [Google Scholar]
  10. Calderon C., Abuin E., Lissi E., Montecinos R.( 2011). Effect of human serum albumin on the kinetics of 4-methylumbelliferyl-β-d-N-N′-N″ Triacetylchitotrioside hydrolysis catalyzed by hen egg white lysozyme. Protein J 30:367–373 [View Article][PubMed]
    [Google Scholar]
  11. Carroll S. A., Hain T., Technow U., Darji A., Pashalidis P., Joseph S. W., Chakraborty T.( 2003). Identification and characterization of a peptidoglycan hydrolase, MurA, of Listeria monocytogenes, a muramidase needed for cell separation. J Bacteriol 185:6801–6808 [View Article][PubMed]
    [Google Scholar]
  12. Dower W. J., Miller J. F., Ragsdale C. W.( 1988). High efficiency transformation of E. coli by high voltage electroporation. Nucleic Acids Res 16:6127–6145 [View Article][PubMed]
    [Google Scholar]
  13. Downing K. J., Mischenko V. V., Shleeva M. O., Young D. I., Young M., Kaprelyants A. S., Apt A. S., Mizrahi V.( 2005). Mutants of Mycobacterium tuberculosis lacking three of the five rpf-like genes are defective for growth in vivo and for resuscitation in vitro. Infect Immun 73:3038–3043 [View Article][PubMed]
    [Google Scholar]
  14. Dworkin J., Shah I. M.( 2010). Exit from dormancy in microbial organisms. Nat Rev Microbiol 8:890–896 [View Article][PubMed]
    [Google Scholar]
  15. Erickson H. P.( 2009). Size and shape of protein molecules at the nanometer level determined by sedimentation, gel filtration, and electron microscopy. Biol Proced Online 11:32–51 [View Article][PubMed]
    [Google Scholar]
  16. Gupta R. K., Srivastava B. S., Srivastava R.( 2010). Comparative expression analysis of rpf-like genes of Mycobacterium tuberculosis H37Rv under different physiological stress and growth conditions. Microbiology 156:2714–2722 [View Article][PubMed]
    [Google Scholar]
  17. Jekow P., Behlke J., Tichelaar W., Lurz R., Regalla M., Hinrichs W., Tavares P.( 1999). Effect of the ionic environment on the molecular structure of bacteriophage SPP1 portal protein. Eur J Biochem 264:724–735 [View Article][PubMed]
    [Google Scholar]
  18. Kana B. D., Gordhan B. G., Downing K. J., Sung N., Vostroktunova G., Machowski E. E., Tsenova L., Young M., Kaprelyants A. et al.( 2008). The resuscitation-promoting factors of Mycobacterium tuberculosis are required for virulence and resuscitation from dormancy but are collectively dispensable for growth in vitro. Mol Microbiol 67:672–684 [View Article][PubMed]
    [Google Scholar]
  19. Koltunov V., Greenblatt C. L., Goncharenko A. V., Demina G. R., Klein B. Y., Young M., Kaprelyants A. S.( 2010). Structural changes and cellular localization of resuscitation-promoting factor in environmental isolates of Micrococcus luteus.. Microb Ecol 59:296–310 [View Article][PubMed]
    [Google Scholar]
  20. Marchler-Bauer A., Lu S., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C. et al.( 2011). CDD: a Conserved Domain Database for the functional annotation of proteins. Nucleic Acids Res 39:Database issue)D225–D229 [View Article][PubMed]
    [Google Scholar]
  21. Mukamolova G. V., Kaprelyants A. S., Young D. I., Young M., Kell D. B.( 1998a). A bacterial cytokine. Proc Natl Acad Sci U S A 95:8916–8921 [View Article][PubMed]
    [Google Scholar]
  22. Mukamolova G. V., Yanopolskaya N. D., Kell D. B., Kaprelyants A. S.( 1998b). On resuscitation from the dormant state of Micrococcus luteus. Antonie van Leeuwenhoek 73:237–243 [View Article][PubMed]
    [Google Scholar]
  23. Mukamolova G. V., Turapov O. A., Kazarian K., Telkov M., Kaprelyants A. S., Kell D. B., Young M.( 2002a). The rpf gene of Micrococcus luteus encodes an essential secreted growth factor. Mol Microbiol 46:611–621 [View Article][PubMed]
    [Google Scholar]
  24. Mukamolova G. V., Turapov O. A., Young D. I., Kaprelyants A. S., Kell D. B., Young M.( 2002b). A family of autocrine growth factors in Mycobacterium tuberculosis. Mol Microbiol 46:623–635 [View Article][PubMed]
    [Google Scholar]
  25. Mukamolova G. V., Murzin A. G., Salina E. G., Demina G. R., Kell D. B., Kaprelyants A. S., Young M.( 2006). Muralytic activity of Micrococcus luteus Rpf and its relationship to physiological activity in promoting bacterial growth and resuscitation. Mol Microbiol 59:84–98 [View Article][PubMed]
    [Google Scholar]
  26. Nikitushkin V. D., Demina G. R., Shleeva M. O., Kaprelyants A. S.( 2013). Peptidoglycan fragments stimulate resuscitation of “non-culturable” mycobacteria. Antonie van Leeuwenhoek 103:37–46 [View Article][PubMed]
    [Google Scholar]
  27. Oliver J. D.( 2005). The viable but nonculturable state in bacteria. J Microbiol 43:Spec No)93–100[PubMed]
    [Google Scholar]
  28. Oliver J. D.( 2010). Recent findings on the viable but nonculturable state in pathogenic bacteria. FEMS Microbiol Rev 34:415–425[PubMed]
    [Google Scholar]
  29. Park S. F., Stewart G. S.( 1990). High-efficiency transformation of Listeria monocytogenes by electroporation of penicillin-treated cells. Gene 94129–132 [View Article][PubMed]
    [Google Scholar]
  30. Petersen T. N., Brunak S., von Heijne G., Nielsen H.( 2011). SignalP 4.0: discriminating signal peptides from transmembrane regions. Nat Methods 8:785–786 [View Article][PubMed]
    [Google Scholar]
  31. Pfeffer J. M., Strating H., Weadge J. T., Clarke A. J.( 2006). Peptidoglycan O acetylation and autolysin profile of Enterococcus faecalis in the viable but nonculturable state. J Bacteriol 188:902–908 [View Article][PubMed]
    [Google Scholar]
  32. Premaratne R. J., Lin W. J., Johnson E. A.( 1991). Development of an improved chemically defined minimal medium for Listeria monocytogenes. Appl Environ Microbiol 57:3046–3048[PubMed]
    [Google Scholar]
  33. Ravagnani A., Finan C. L., Young M.( 2005). A novel firmicute protein family related to the actinobacterial resuscitation-promoting factors by non-orthologous domain displacement. BMC Genomics 6:39 [View Article][PubMed]
    [Google Scholar]
  34. Roszak D. B., Grimes D. J., Colwell R. R.( 1984). Viable but nonrecoverable stage of Salmonella enteritidis in aquatic systems. Can J Microbiol 30:334–338 [View Article][PubMed]
    [Google Scholar]
  35. Ruggiero A., Tizzano B., Pedone E., Pedone C., Wilmanns M., Berisio R.( 2009). Crystal structure of the resuscitation-promoting factor (DeltaDUF)RpfB from M. tuberculosis. J Mol Biol 385:153–162 [View Article][PubMed]
    [Google Scholar]
  36. São-José C., Parreira R., Vieira G., Santos M. A.( 2000). The N-terminal region of the Oenococcus oeni bacteriophage fOg44 lysin behaves as a bona fide signal peptide in Escherichia coli and as a cis-inhibitory element, preventing lytic activity on oenococcal cells. J Bacteriol 182:5823–5831 [View Article][PubMed]
    [Google Scholar]
  37. São-José C., Baptista C., Santos M. A.( 2004). Bacillus subtilis operon encoding a membrane receptor for bacteriophage SPP1. J Bacteriol 186:8337–8346 [View Article][PubMed]
    [Google Scholar]
  38. São-José C., Lhuillier S., Lurz R., Melki R., Lepault J., Santos M. A., Tavares P.( 2006). The ectodomain of the viral receptor YueB forms a fiber that triggers ejection of bacteriophage SPP1 DNA. J Biol Chem 281:11464–11470 [View Article][PubMed]
    [Google Scholar]
  39. Scheurwater E., Reid C. W., Clarke A. J.( 2008). Lytic transglycosylases: bacterial space-making autolysins. Int J Biochem Cell Biol 40:586–591 [View Article][PubMed]
    [Google Scholar]
  40. Signoretto C., del Mar, Lleò M. M., Tafi M. C., Canepari P.( 2000). Cell wall chemical composition of Enterococcus faecalis in the viable but nonculturable state. Appl Environ Microbiol 66:1953–1959 [View Article][PubMed]
    [Google Scholar]
  41. Smith K., Youngman P.( 1992). Use of a new integrational vector to investigate compartment-specific expression of the Bacillus subtilis spoIIM gene. Biochimie 74:705–711 [View Article][PubMed]
    [Google Scholar]
  42. Tabor S., Richardson C. C.( 1985). A bacteriophage T7 RNA polymerase/promoter system for controlled exclusive expression of specific genes. Proc Natl Acad Sci U S A 82:1074–1078 [View Article][PubMed]
    [Google Scholar]
  43. Telkov M. V., Demina G. R., Voloshin S. A., Salina E. G., Dudik T. V., Stekhanova T. N., Mukamolova G. V., Kazaryan K. A., Goncharenko A. V. et al.( 2006). Proteins of the Rpf (resuscitation promoting factor) family are peptidoglycan hydrolases. Biochemistry (Mosc) 71:414–422 [View Article][PubMed]
    [Google Scholar]
  44. Trost M., Wehmhöner D., Kärst U., Dieterich G., Wehland J., Jänsch L.( 2005). Comparative proteome analysis of secretory proteins from pathogenic and nonpathogenic Listeria species. Proteomics 5:1544–1557 [View Article][PubMed]
    [Google Scholar]
  45. Tufariello J. M., Jacobs W. R. Jr, Chan J.( 2004). Individual Mycobacterium tuberculosis resuscitation-promoting factor homologues are dispensable for growth in vitro and in vivo. Infect Immun 72:515–526 [View Article][PubMed]
    [Google Scholar]
  46. van Straaten K. E., Dijkstra B. W., Vollmer W., Thunnissen A. M.( 2005). Crystal structure of MltA from Escherichia coli reveals a unique lytic transglycosylase fold. J Mol Biol 352:1068–1080 [View Article][PubMed]
    [Google Scholar]
  47. Wiedmann M., Arvik T. J., Hurley R. J., Boor K. J.( 1998). General stress transcription factor sigmaB and its role in acid tolerance and virulence of Listeria monocytogenes.. J Bacteriol 180:3650–3656[PubMed]
    [Google Scholar]
  48. Xu H. S., Roberts N., Singleton F. L., Attwell R. W., Grimes D. J., Colwell R. R.( 1982). Survival and viability of nonculturable Escherichia coli and Vibrio cholerae in the estuarine and marine environment. Microb Ecol 8:313–323 [View Article]
    [Google Scholar]
  49. Yang Y., Hamaguchi K.( 1980). Hydrolysis of 4-methylumbelliferyl N-acetyl-chitotetraoside catalyzed by hen lysozyme. J Biochem 88:829–836[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.067850-0
Loading
/content/journal/micro/10.1099/mic.0.067850-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error