1887

Abstract

Methylisocitrate lyase (MCL), a signature enzyme of the methylcitrate cycle, which cleaves methylisocitrate to pyruvate and succinate, is required for propionate metabolism, for secondary metabolite production and for virulence in bacteria and fungi. Here we investigate the role of the methylcitrate cycle by generating an deletion mutant in the fungal biocontrol agent . Gene expression analysis shows that a basal expression of is observed in all growth conditions tested. Phenotypic analysis of an deletion mutant suggests the requirement of MCL in propionate resistance, growth, conidial pigmentation and germination, and abiotic stress tolerance. A plate confrontation assay did not show a difference between the WT and the Δ strain in antagonism towards . However, the Δ strain displays reduced antagonism towards . based on a secretion assay. Furthermore, an root colonization assay shows that the Δ strain had reduced ability to colonize roots, which results in reduced induction of systemic resistance towards . These data show that MCL is important not only for growth and development in . but also in antagonism, root colonization and induction of defence responses in plants.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070466-0
2013-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/12/2492.html?itemId=/content/journal/micro/10.1099/mic.0.070466-0&mimeType=html&fmt=ahah

References

  1. Brock M.( 2005). Generation and phenotypic characterization of Aspergillus nidulans methylisocitrate lyase deletion mutants: methylisocitrate inhibits growth and conidiation. Appl Environ Microbiol 71:5465–5475 [View Article][PubMed]
    [Google Scholar]
  2. Brock M., Buckel W.( 2004). On the mechanism of action of the antifungal agent propionate. Eur J Biochem 271:3227–3241 [View Article][PubMed]
    [Google Scholar]
  3. Brock M., Darley D., Textor S., Buckel W.( 2001). 2-Methylisocitrate lyases from the bacterium Escherichia coli and the filamentous fungus Aspergillus nidulans: characterization and comparison of both enzymes. Eur J Biochem 268:3577–3586 [View Article][PubMed]
    [Google Scholar]
  4. Brunner K., Omann M., Pucher M. E., Delic M., Lehner S. M., Domnanich P., Kratochwill K., Druzhinina I., Denk D., Zeilinger S.( 2008). Trichoderma G protein-coupled receptors: functional characterisation of a cAMP receptor-like protein from Trichoderma atroviride.. Curr Genet 54:283–299 [View Article][PubMed]
    [Google Scholar]
  5. Calvo A. M., Wilson R. A., Bok J. W., Keller N. P.( 2002). Relationship between secondary metabolism and fungal development. Microbiol Mol Biol Rev 66:447–459 [View Article][PubMed]
    [Google Scholar]
  6. Contreras-Cornejo H. A., Macías-Rodríguez L., Beltrán-Peña E., Herrera-Estrella A., López-Bucio J.( 2011). Trichoderma-induced plant immunity likely involves both hormonal- and camalexin-dependent mechanisms in Arabidopsis thaliana and confers resistance against necrotrophic fungi Botrytis cinerea. Plant Signal Behav 6:1554–1563 [View Article][PubMed]
    [Google Scholar]
  7. Druzhinina I. S., Seidl-Seiboth V., Herrera-Estrella A., Horwitz B. A., Kenerley C. M., Monte E., Mukherjee P. K., Zeilinger S., Grigoriev I. V., Kubicek C. P.( 2011). Trichoderma: the genomics of opportunistic success. Nat Rev Microbiol 9:749–759 [View Article][PubMed]
    [Google Scholar]
  8. Dubey M. K., Ubhayasekera W., Sandgren M., Jensen D. F., Karlsson M.( 2012). Disruption of the Eng18B ENGase gene in the fungal biocontrol agent Trichoderma atroviride affects growth, conidiation and antagonistic ability. PLoS ONE 7:e36152 [View Article][PubMed]
    [Google Scholar]
  9. Dubey M. K., Broberg A., Sooriyaarachchi S., Ubhayasekera W., Jensen D. F., Karlsson M.( 2013). The glyoxylate cycle is involved in pleotropic phenotypes, antagonism and induction of plant defence responses in the fungal biocontrol agent Trichoderma atroviride.. Fungal Genet Biol 58:33–41 [View Article][PubMed]
    [Google Scholar]
  10. Dunn M. F., Ramírez-Trujillo J. A., Hernández-Lucas I.( 2009). Major roles of isocitrate lyase and malate synthase in bacterial and fungal pathogenesis. Microbiology 155:3166–3175 [View Article][PubMed]
    [Google Scholar]
  11. Gould T. A., van de Langemheen H., Muñoz-Elías E. J., McKinney J. D., Sacchettini J. C.( 2006). Dual role of isocitrate lyase 1 in the glyoxylate and methylcitrate cycles in Mycobacterium tuberculosis.. Mol Microbiol 61:940–947 [View Article][PubMed]
    [Google Scholar]
  12. Harman G. E., Howell C. R., Viterbo A., Chet I., Lorito M.( 2004). Trichoderma species–opportunistic, avirulent plant symbionts. Nat Rev Microbiol 2:43–56 [View Article][PubMed]
    [Google Scholar]
  13. Horswill A. R., Escalante-Semerena J. C.( 1999). Salmonella typhimurium LT2 catabolizes propionate via the 2-methylcitric acid cycle. J Bacteriol 181:5615–5623[PubMed]
    [Google Scholar]
  14. Ibrahim-Granet O., Dubourdeau M., Latgé J. P., Ave P., Huerre M., Brakhage A. A., Brock M.( 2008). Methylcitrate synthase from Aspergillus fumigatus is essential for manifestation of invasive aspergillosis. Cell Microbiol 10:134–148[PubMed]
    [Google Scholar]
  15. Inglis G. D., Kawchuk L. M.( 2002). Comparative degradation of oomycete, ascomycete, and basidiomycete cell walls by mycoparasitic and biocontrol fungi. Can J Microbiol 48:60–70 [View Article][PubMed]
    [Google Scholar]
  16. Karimi M., De Meyer B., Hilson P.( 2005). Modular cloning in plant cells. Trends Plant Sci 10:103–105 [View Article][PubMed]
    [Google Scholar]
  17. Kück U., Hoff B.( 2006). Application of the nourseothricin acetyltransferase gene (nat1) as dominant marker for the transformation of filamentous fungi. Fungal Genet Newsl 53:9–11
    [Google Scholar]
  18. Lee S. H., Han Y. K., Yun S. H., Lee Y. W.( 2009). Roles of the glyoxylate and methylcitrate cycles in sexual development and virulence in the cereal pathogen Gibberella zeae.. Eukaryot Cell 8:1155–1164 [View Article][PubMed]
    [Google Scholar]
  19. Letunic I., Doerks T., Bork P.( 2009). SMART 6: recent updates and new developments. Nucleic Acids Res 37:Database issueD229–D232 [View Article][PubMed]
    [Google Scholar]
  20. Limenitakis J., Oppenheim R. D., Creek D. J., Foth B. J., Barrett M. P., Soldati-Favre D.( 2013). The 2-methylcitrate cycle is implicated in the detoxification of propionate in Toxoplasma gondii.. Mol Microbiol 87:894–908 [View Article][PubMed]
    [Google Scholar]
  21. Liu S., Lu Z., Han Y., Melamud E., Dunaway-Mariano D., Herzberg O.( 2005). Crystal structures of 2-methylisocitrate lyase in complex with product and with isocitrate inhibitor provide insight into lyase substrate specificity, catalysis and evolution. Biochemistry 44:2949–2962 [View Article][PubMed]
    [Google Scholar]
  22. Lorang J. M., Tuori R. P., Martinez J. P., Sawyer T. L., Redman R. S., Rollins J. A., Wolpert T. J., Johnson K. B., Rodriguez R. J.& other authors ( 2001). Green fluorescent protein is lighting up fungal biology. Appl Environ Microbiol 67:1987–1994 [View Article][PubMed]
    [Google Scholar]
  23. Maerker C., Rohde M., Brakhage A. A., Brock M.( 2005). Methylcitrate synthase from Aspergillus fumigatus. Propionyl-CoA affects polyketide synthesis, growth and morphology of conidia. FEBS J 272:3615–3630 [View Article][PubMed]
    [Google Scholar]
  24. Marchler-Bauer A., Anderson J. B., Chitsaz F., Derbyshire M. K., DeWeese-Scott C., Fong J. H., Geer L. Y., Geer R. C., Gonzales N. R.& other authors ( 2009). CDD: specific functional annotation with the Conserved Domain Database. Nucleic Acids Res 37:Database issueD205–D210 [View Article][PubMed]
    [Google Scholar]
  25. Miyakoshi S., Uchiyama H., Someya T., Satoh T., Tabuchi T.( 1987). Distribution of the methylcitric acid cycle and β-oxidation pathway for propionate catabolism in fungi. Agric Biol Chem 51:2381–2387 [View Article]
    [Google Scholar]
  26. Mukherjee P. K., Horwitz B. A., Kenerley C. M.( 2012). Secondary metabolism in Trichoderma – a genomic perspective. Microbiology 158:35–45 [View Article][PubMed]
    [Google Scholar]
  27. Müller S., Fleck C. B., Wilson D., Hummert C., Hube B., Brock M.( 2011). Gene acquisition, duplication and metabolic specification: the evolution of fungal methylisocitrate lyases. Environ Microbiol 13:1534–1548 [View Article][PubMed]
    [Google Scholar]
  28. Muñoz-Elías E. J., McKinney J. D.( 2005). Mycobacterium tuberculosis isocitrate lyases 1 and 2 are jointly required for in vivo growth and virulence. Nat Med 11:638–644 [View Article][PubMed]
    [Google Scholar]
  29. Muñoz-Elías E. J., Upton A. M., Cherian J., McKinney J. D.( 2006). Role of the methylcitrate cycle in Mycobacterium tuberculosis metabolism, intracellular growth, and virulence. Mol Microbiol 60:1109–1122 [View Article][PubMed]
    [Google Scholar]
  30. Nygren C. M. R., Eberhardt U., Karlsson M., Parrent J. L., Lindahl B. D., Taylor A. F.( 2008). Growth on nitrate and occurrence of nitrate reductase-encoding genes in a phylogenetically diverse range of ectomycorrhizal fungi. New Phytol 180:875–889 [View Article][PubMed]
    [Google Scholar]
  31. Papavizas G. C., Lumsden R. D.( 1982). Improved medium for isolation of Trichoderma spp. from soil. Plant Dis 66:1019–1020 [View Article]
    [Google Scholar]
  32. Pfaffl M. W.( 2001). A new mathematical model for relative quantification in real-time RT-PCR. Nucleic Acids Res 29:e45 [View Article][PubMed]
    [Google Scholar]
  33. Quevillon E., Silventoinen V., Pillai S., Harte N., Mulder N., Apweiler R., Lopez R.( 2005). InterProScan: protein domains identifier. Nucleic Acids Res 33:Web Server issueW116–W120 [View Article][PubMed]
    [Google Scholar]
  34. Salas-Marina M. A., Silva-Flores M. A., Uresti-Rivera E. E., Castro-Longoria E., Herrera-Estrella A., Casas-Flores S.( 2011). Colonization of Arabidopsis roots by Trichoderma atroviride promotes growth and enhances systemic disease resistance through jasmonic acid/ethylene and salicylic acid pathways. Eur J Plant Pathol 131:15–26 [View Article]
    [Google Scholar]
  35. Seidl V., Huemer B., Seiboth B., Kubicek C. P.( 2005). A complete survey of Trichoderma chitinases reveals three distinct subgroups of family 18 chitinases. FEBS J 272:5923–5939 [View Article][PubMed]
    [Google Scholar]
  36. Textor S., Wendisch V. F., De Graaf A. A., Müller U., Linder M. I., Linder D., Buckel W.( 1997). Propionate oxidation in Escherichia coli: evidence for operation of a methylcitrate cycle in bacteria. Arch Microbiol 168:428–436 [View Article][PubMed]
    [Google Scholar]
  37. Tzelepis G. D., Melin P., Jensen D. F., Stenlid J., Karlsson M.( 2012). Functional analysis of glycoside hydrolase family 18 and 20 genes in Neurospora crassa.. Fungal Genet Biol 49:717–730 [View Article][PubMed]
    [Google Scholar]
  38. Upton A. M., McKinney J. D.( 2007). Role of the methylcitrate cycle in propionate metabolism and detoxification in Mycobacterium smegmatis.. Microbiology 153:3973–3982 [View Article][PubMed]
    [Google Scholar]
  39. Utermark J., Karlovsky P. . ( 2008). Genetic transformation of filamentous fungi by Agrobacterium tumefaciens. Nature Protocol Exchange http://www.nature.com/protocolexchange/protocols/427 [View Article]
    [Google Scholar]
  40. Vargas Gil S., Pastor S., March G. J.( 2009). Quantitative isolation of biocontrol agents Trichoderma spp., Gliocladium spp. and actinomycetes from soil with culture media. Microbiol Res 164:196–205 [View Article][PubMed]
    [Google Scholar]
  41. Wickel S. M., Citron C. A., Dickschat J. S.( 2013). 2H-Pyran-2-ones from Trichoderma viride and Trichoderma asperellum.. Eur J Org Chem 2013:2906–2913 [View Article]
    [Google Scholar]
  42. Zhang Y. Q., Keller N. P.( 2004). Blockage of methylcitrate cycle inhibits polyketide production in Aspergillus nidulans. Mol Microbiol 52:541–550 [View Article][PubMed]
    [Google Scholar]
  43. Zhang Y. Q., Brock M., Keller N. P.( 2004). Connection of propionyl-CoA metabolism to polyketide biosynthesis in Aspergillus nidulans.. Genetics 168:785–794 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070466-0
Loading
/content/journal/micro/10.1099/mic.0.070466-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error