1887

Abstract

NhaB-like antiporters were the second described class of Na/H antiporters, identified in bacteria more than 20 years ago. While -like gene sequences have been found in a number of bacterial genomes, only a few of the NhaB-like antiporters have been functionally characterized to date. Although earlier studies have identified a few pH-sensitive and -insensitive NhaB-like antiporters, the mechanisms that determine their pH responses still remain elusive. In this study, we sought to investigate the diversities and similarities among bacterial NhaB-like antiporters, with particular emphasis on their pH responsiveness. Our phylogenetic analysis of NhaB-like antiporters, combined with pH profile analyses of activities for representative members of several phylogenetic groups, demonstrated that NhaB-like antiporters could be classified into three distinct types according to the degree of their pH dependencies. Interestingly, pH-insensitive NhaB-like antiporters were only found in a limited proportion of enterobacterial species, which constitute a subcluster that appears to have diverged relatively recently among enterobacterial NhaB-like antiporters. Furthermore, kinetic property analyses of NhaB-like antiporters at different pH values revealed that the degree of pH sensitivity of antiport activities was strongly correlated with the magnitude of pH-dependent change in apparent values, suggesting that the dramatic pH sensitivities observed for several NhaB-like antiporters might be mainly due to the significant increases of apparent at lower pH. These results strongly suggested the possibility that the loss of pH sensitivity of NhaB-like antiporters had occurred relatively recently, probably via accumulation of the mutations that impair pH-dependent change of in the course of molecular evolution.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.070656-0
2013-10-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/159/10/2191.html?itemId=/content/journal/micro/10.1099/mic.0.070656-0&mimeType=html&fmt=ahah

References

  1. Apse M. P., Blumwald E. ( 2007). Na+ transport in plants. FEBS Lett 581:2247–2254 [View Article][PubMed]
    [Google Scholar]
  2. Brett C. L., Donowitz M., Rao R. ( 2005). Evolutionary origins of eukaryotic sodium/proton exchangers. Am J Physiol Cell Physiol 288:C223–C239 [View Article][PubMed]
    [Google Scholar]
  3. Enomoto H., Unemoto T., Nishibuchi M., Padan E., Nakamura T. ( 1998). Topological study of Vibrio alginolyticus NhaB Na+/H+ antiporter using gene fusions in Escherichia coli cells. Biochim Biophys Acta 1370:77–86 [View Article][PubMed]
    [Google Scholar]
  4. Galili L., Rothman A., Kozachkov L., Rimon A., Padan E. ( 2002). Trans membrane domain IV is involved in ion transport activity and pH regulation of the NhaA-Na+/H+ antiporter of Escherichia coli . Biochemistry 41:609–617 [View Article][PubMed]
    [Google Scholar]
  5. Galili L., Herz K., Dym O., Padan E. ( 2004). Unraveling functional and structural interactions between transmembrane domains IV and XI of NhaA Na+/H+ antiporter of Escherichia coli. . J Biol Chem 279:23104–23113 [View Article][PubMed]
    [Google Scholar]
  6. Gerchman Y., Olami Y., Rimon A., Taglicht D., Schuldiner S., Padan E. ( 1993). Histidine-226 is part of the pH sensor of NhaA, a Na+/H+ antiporter in Escherichia coli. . Proc Natl Acad Sci U S A 90:1212–1216 [View Article][PubMed]
    [Google Scholar]
  7. Han M. V., Zmasek C. M. ( 2009). phyloXML: XML for evolutionary biology and comparative genomics. BMC Bioinformatics 10:356 [View Article][PubMed]
    [Google Scholar]
  8. Hunte C., Screpanti E., Venturi M., Rimon A., Padan E., Michel H. ( 2005). Structure of a Na+/H+ antiporter and insights into mechanism of action and regulation by pH. Nature 435:1197–1202 [View Article][PubMed]
    [Google Scholar]
  9. Kiriyama W., Nakamura T., Fukuhara M., Yamaguchi T. ( 2012). Critical involvement of the E373-D434 region in the acid sensitivity of a NhaB-type Na+/H+ antiporter from Vibrio alginolyticus. . Biochemistry 51:7766–7774 [View Article][PubMed]
    [Google Scholar]
  10. Krulwich T. A., Hicks D. B., Ito M. ( 2009). Cation/proton antiporter complements of bacteria: why so large and diverse?. Mol Microbiol 74:257–260 [View Article][PubMed]
    [Google Scholar]
  11. Kuroda T., Fujita N., Utsugi J., Kuroda M., Mizushima T., Tsuchiya T. ( 2004). A major Li+ extrusion system NhaB of Pseudomonas aeruginosa: comparison with the major Na+ extrusion system NhaP. Microbiol Immunol 48:243–250[PubMed] [CrossRef]
    [Google Scholar]
  12. Kuwabara N., Inoue H., Tsuboi Y., Mitsui K., Matsushita M., Kanazawa H. ( 2006). Structure–function relationship of the fifth transmembrane domain in the Na+/H+ antiporter of Helicobacter pylori: topology and function of the residues, including two consecutive essential aspartate residues. Biochemistry 45:14834–14842 [View Article][PubMed]
    [Google Scholar]
  13. Larkin M. A., Blackshields G., Brown N. P., Chenna R., McGettigan P. A., McWilliam H., Valentin F., Wallace I. M., Wilm A. & other authors ( 2007). and C. version 2.0. Bioinformatics 23:2947–2948 [View Article][PubMed]
    [Google Scholar]
  14. Malo M. E., Fliegel L. ( 2006). Physiological role and regulation of the Na+/H+ exchanger. Can J Physiol Pharmacol 84:1081–1095 [View Article][PubMed]
    [Google Scholar]
  15. Messing J., Vieira J. ( 1982). A new pair of M13 vectors for selecting either DNA strand of double-digest restriction fragments. Gene 19:269–276 [View Article][PubMed]
    [Google Scholar]
  16. Nakamura T., Enomoto H., Unemoto T. ( 1996). Cloning and sequencing of nhaB gene encoding an Na+/H+ antiporter from Vibrio alginolyticus. . Biochim Biophys Acta 1275:157–160 [View Article][PubMed]
    [Google Scholar]
  17. Nakamura T., Fujisaki Y., Enomoto H., Nakayama Y., Takabe T., Yamaguchi N., Uozumi N. ( 2001). Residue aspartate-147 from the third transmembrane region of Na+/H+ antiporter NhaB of Vibrio alginolyticus plays a role in its activity. J Bacteriol 183:5762–5767 [View Article][PubMed]
    [Google Scholar]
  18. Noumi T., Inoue H., Sakurai T., Tsuchiya T., Kanazawa H. ( 1997). Identification and characterization of functional residues in a Na+/H+ antiporter (NhaA) from Escherichia coli by random mutagenesis. J Biochem 121:661–670 [View Article][PubMed]
    [Google Scholar]
  19. Ohyama T., Igarashi K., Kobayashi H. ( 1994). Physiological role of the chaA gene in sodium and calcium circulations at a high pH in Escherichia coli. . J Bacteriol 176:4311–4315[PubMed]
    [Google Scholar]
  20. Padan E. ( 2008). The enlightening encounter between structure and function in the NhaA Na+-H+ antiporter. Trends Biochem Sci 33:435–443 [View Article][PubMed]
    [Google Scholar]
  21. Padan E., Maisler N., Taglicht D., Karpel R., Schuldiner S. ( 1989). Deletion of ant in Escherichia coli reveals its function in adaptation to high salinity and an alternative Na+/H+ antiporter system(s). J Biol Chem 264:20297–20302[PubMed]
    [Google Scholar]
  22. Padan E., Bibi E., Ito M., Krulwich T. A. ( 2005). Alkaline pH homeostasis in bacteria: new insights. Biochim Biophys Acta 1717:67–88 [View Article][PubMed]
    [Google Scholar]
  23. Pinner E., Padan E., Schuldiner S. ( 1992). Cloning, sequencing, and expression of the nhaB gene, encoding a Na+/H+ antiporter in Escherichia coli. . J Biol Chem 267:11064–11068[PubMed]
    [Google Scholar]
  24. Pinner E., Padan E., Schuldiner S. ( 1994). Kinetic properties of NhaB, a Na+/H+ antiporter from Escherichia coli. . J Biol Chem 269:26274–26279[PubMed]
    [Google Scholar]
  25. Prakash S., Cooper G., Singhi S., Saier M. H. Jr ( 2003). The ion transporter superfamily. Biochim Biophys Acta 1618:79–92 [View Article][PubMed]
    [Google Scholar]
  26. Putnoky P., Kereszt A., Nakamura T., Endre G., Grosskopf E., Kiss P., Kondorosi A. ( 1998). The pha gene cluster of Rhizobium meliloti involved in pH adaptation and symbiosis encodes a novel type of K+ efflux system. Mol Microbiol 28:1091–1101 [View Article][PubMed]
    [Google Scholar]
  27. Rimon A., Gerchman Y., Kariv Z., Padan E. ( 1998). A point mutation (G338S) and its suppressor mutations affect both the pH response of the NhaA-Na+/H+ antiporter as well as the growth phenotype of Escherichia coli. . J Biol Chem 273:26470–26476 [View Article][PubMed]
    [Google Scholar]
  28. Rothman A., Gerchman Y., Padan E., Schuldiner S. ( 1997). Probing the conformation of NhaA, a Na+/H+ antiporter from Escherichia coli, with trypsin. Biochemistry 36:14572–14576 [View Article][PubMed]
    [Google Scholar]
  29. Saier M. H. Jr ( 2000). A functional-phylogenetic classification system for transmembrane solute transporters. Microbiol Mol Biol Rev 64:354–411 [View Article][PubMed]
    [Google Scholar]
  30. Saier M. H. Jr, Paulsen I. T. ( 2000). Whole genome analyses of transporters in spirochetes: Borrelia burgdorferi and Treponema pallidum . J Mol Microbiol Biotechnol 2:393–399[PubMed]
    [Google Scholar]
  31. Saitou N., Nei M. ( 1987). The neighbor-joining method: a new method for reconstructing phylogenetic trees. Mol Biol Evol 4:406–425[PubMed]
    [Google Scholar]
  32. Swartz T. H., Ito M., Ohira T., Natsui S., Hicks D. B., Krulwich T. A. ( 2007). Catalytic properties of Staphylococcus aureus and Bacillus members of the secondary cation/proton antiporter-3 (Mrp) family are revealed by an optimized assay in an Escherichia coli host. J Bacteriol 189:3081–3090 [View Article][PubMed]
    [Google Scholar]
  33. Taglicht D., Padan E., Schuldiner S. ( 1991). Overproduction and purification of a functional Na+/H+ antiporter coded by nhaA (ant) from Escherichia coli. . J Biol Chem 266:11289–11294[PubMed]
    [Google Scholar]
  34. Tsuboi Y., Inoue H., Nakamura N., Kanazawa H. ( 2003). Identification of membrane domains of the Na+/H+ antiporter (NhaA) protein from Helicobacter pylori required for ion transport and pH sensing. J Biol Chem 278:21467–21473 [View Article][PubMed]
    [Google Scholar]
  35. Williams K. P., Gillespie J. J., Sobral B. W. S., Nordberg E. K., Snyder E. E., Shallom J. M., Dickerman A. W. ( 2010). Phylogeny of gammaproteobacteria. J Bacteriol 192:2305–2314 [View Article][PubMed]
    [Google Scholar]
  36. Yamaguchi T., Tsutsumi F., Putnoky P., Fukuhara M., Nakamura T. ( 2009). pH-dependent regulation of the multi-subunit cation/proton antiporter Pha1 system from Sinorhizobium meliloti. . Microbiology 155:2750–2756 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.070656-0
Loading
/content/journal/micro/10.1099/mic.0.070656-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error