1887

Abstract

The nucleoids of undamaged cells have a characteristic shape and number, which is dependent on the growth medium. Upon induction of the SOS response by a low dose of UV irradiation an extensive reorganization of the nucleoids occurred. Two distinct phases were observed by fluorescence microscopy. First, the nucleoids were found to change shape and fuse into compact structures at midcell. The compaction of the nucleoids lasted for 10–20 min and was followed by a phase where the DNA was dispersed throughout the cells. This second phase lasted for ~1 h. The compaction was found to be dependent on the recombination proteins RecA, RecO and RecR as well as the SOS-inducible, SMC (structural maintenance of chromosomes)-like protein RecN. RecN protein is produced in high amounts during the first part of the SOS response. It is possible that the RecN-mediated ‘compact DNA’ stage at the beginning of the SOS response serves to stabilize damaged DNA prior to recombination and repair.

Funding
This study was supported by the:
  • The Research Council of Norway
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.075051-0
2014-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/5/872.html?itemId=/content/journal/micro/10.1099/mic.0.075051-0&mimeType=html&fmt=ahah

References

  1. Baba T., Ara T., Hasegawa M., Takai Y., Okumura Y., Baba M., Datsenko K. A., Tomita M., Wanner B. L., Mori H. ( 2006). Construction of Escherichia coli K-12 in-frame, single-gene knockout mutants: the Keio collection. Mol Syst Biol 2:0008 [View Article][PubMed]
    [Google Scholar]
  2. Blanco M., Herrera G., Collado P., Rebollo J. E., Botella L. M. ( 1982). Influence of RecA protein on induced mutagenesis. Biochimie 64:633–636 [View Article][PubMed]
    [Google Scholar]
  3. Branzei D., Foiani M. ( 2010). Maintaining genome stability at the replication fork. Nat Rev Mol Cell Biol 11:208–219 [View Article][PubMed]
    [Google Scholar]
  4. Brendler T., Sawitzke J., Sergueev K., Austin S. ( 2000). A case for sliding SeqA tracts at anchored replication forks during Escherichia coli chromosome replication and segregation. EMBO J 19:6249–6258 [View Article][PubMed]
    [Google Scholar]
  5. Cazaux C., Larminat F., Defais M. ( 1991). Site-directed mutagenesis in the Escherichia coli recA gene. Biochimie 73:281–284 [View Article][PubMed]
    [Google Scholar]
  6. Clark A. J. ( 1973). Recombination deficient mutants of E. coli and other bacteria. Annu Rev Genet 7:67–86 [View Article][PubMed]
    [Google Scholar]
  7. Clark D. J., Maaløe O. ( 1967). DNA replication and the division cycle in Escherichia coli . J Mol Biol 23:99–112 [View Article]
    [Google Scholar]
  8. Courcelle J., Khodursky A., Peter B., Brown P. O., Hanawalt P. C. ( 2001). Comparative gene expression profiles following UV exposure in wild-type and SOS-deficient Escherichia coli . Genetics 158:41–64[PubMed]
    [Google Scholar]
  9. Courcelle C. T., Belle J. J., Courcelle J. ( 2005). Nucleotide excision repair or polymerase V-mediated lesion bypass can act to restore UV-arrested replication forks in Escherichia coli . J Bacteriol 187:6953–6961 [View Article][PubMed]
    [Google Scholar]
  10. Devoret R., Pierre M., Moreau P. L. ( 1983). Prophage phi 80 is induced in Escherichia coli K12 recA430 . Mol Gen Genet 189:199–206 [View Article][PubMed]
    [Google Scholar]
  11. Dewitt S. K., Adelberg E. A. ( 1962). The occurrence of a genetic transposition in a strain of Escherichia coli . Genetics 47:577–585[PubMed]
    [Google Scholar]
  12. Dutreix M., Bailone A., Devoret R. ( 1985). Efficiency of induction of prophage lambda mutants as a function of recA alleles. J Bacteriol 161:1080–1085[PubMed]
    [Google Scholar]
  13. Fernández De Henestrosa A. R., Ogi T., Aoyagi S., Chafin D., Hayes J. J., Ohmori H., Woodgate R. ( 2000). Identification of additional genes belonging to the LexA regulon in Escherichia coli . Mol Microbiol 35:1560–1572 [View Article][PubMed]
    [Google Scholar]
  14. Fossum S., Crooke E., Skarstad K. ( 2007). Organization of sister origins and replisomes during multifork DNA replication in Escherichia coli . EMBO J 26:4514–4522 [View Article][PubMed]
    [Google Scholar]
  15. Friedberg E. C., Walker G. C., Siede W., Wood R. D., Schultz R. A., Ellenberger T. ( 2006). DNA Repair and Mutagenesis, 2nd edn. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  16. Graumann P. L., Knust T. ( 2009). Dynamics of the bacterial SMC complex and SMC-like proteins involved in DNA repair. Chromosome Res 17:265–275 [View Article][PubMed]
    [Google Scholar]
  17. Grove J. I., Wood S. R., Briggs G. S., Oldham N. J., Lloyd R. G. ( 2009). A soluble RecN homologue provides means for biochemical and genetic analysis of DNA double-strand break repair in Escherichia coli . DNA Repair (Amst) 8:1434–1443 [View Article][PubMed]
    [Google Scholar]
  18. Hegde S., Sandler S. J., Clark A. J., Madiraju M. V. ( 1995). recO and recR mutations delay induction of the SOS response in Escherichia coli . Mol Gen Genet 246:254–258 [View Article][PubMed]
    [Google Scholar]
  19. Heller R. C., Marians K. J. ( 2006). Replisome assembly and the direct restart of stalled replication forks. Nat Rev Mol Cell Biol 7:932–943 [View Article][PubMed]
    [Google Scholar]
  20. Hendricks E. C., Szerlong H., Hill T., Kuempel P. ( 2000). Cell division, guillotining of dimer chromosomes and SOS induction in resolution mutants (dif, xerC and xerD) of Escherichia coli. Mol Microbiol 36973–981 [CrossRef]
    [Google Scholar]
  21. Hiraga S., Ichinose C., Niki H., Yamazoe M. ( 1998). Cell cycle-dependent duplication and bidirectional migration of SeqA-associated DNA-protein complexes in E. coli . Mol Cell 1:381–387 [View Article][PubMed]
    [Google Scholar]
  22. Hiraga S., Ichinose C., Onogi T., Niki H., Yamazoe M. ( 2000). Bidirectional migration of SeqA-bound hemimethylated DNA clusters and pairing of oriC copies in Escherichia coli . Genes Cells 5:327–341 [View Article][PubMed]
    [Google Scholar]
  23. Hirano T. ( 2005). SMC proteins and chromosome mechanics: from bacteria to humans. Philos Trans R Soc Lond B Biol Sci 360:507–514 [View Article][PubMed]
    [Google Scholar]
  24. Kidane D., Sanchez H., Alonso J. C., Graumann P. L. ( 2004). Visualization of DNA double-strand break repair in live bacteria reveals dynamic recruitment of Bacillus subtilis RecF, RecO and RecN proteins to distinct sites on the nucleoids. Mol Microbiol 52:1627–1639 [View Article][PubMed]
    [Google Scholar]
  25. Kowalczykowski S. C., Krupp R. A. ( 1989). Biochemical events essential to the recombination activity of Escherichia coli RecA protein. II. Co-dominant effects of RecA142 protein on wild-type RecA protein function. J Mol Biol 207:735–747 [View Article][PubMed]
    [Google Scholar]
  26. Kowalczykowski S. C., Burk D. L., Krupp R. A. ( 1989). Biochemical events essential to the recombination activity of Escherichia coli RecA protein. I. Properties of the mutant RecA142 protein. J Mol Biol 207:719–733 [View Article][PubMed]
    [Google Scholar]
  27. Kuzminov A. ( 1995). Collapse and repair of replication forks in Escherichia coli . Mol Microbiol 16:373–384 [View Article][PubMed]
    [Google Scholar]
  28. Kuzminov A. ( 1999). Recombinational repair of DNA damage in Escherichia coli and bacteriophage lambda. Microbiol Mol Biol Rev 63:751–813[PubMed]
    [Google Scholar]
  29. Levin-Zaidman S., Frenkiel-Krispin D., Shimoni E., Sabanay I., Wolf S. G., Minsky A. ( 2000). Ordered intracellular RecA–DNA assemblies: a potential site of in vivo RecA-mediated activities. Proc Natl Acad Sci U S A 97:6791–6796 [View Article][PubMed]
    [Google Scholar]
  30. Lloyd R. G., Picksley S. M., Prescott C. ( 1983). Inducible expression of a gene specific to the RecF pathway for recombination in Escherichia coli K12. Mol Gen Genet 190:162–167 [View Article][PubMed]
    [Google Scholar]
  31. Lukas C., Bartek J., Lukas J. ( 2005). Imaging of protein movement induced by chromosomal breakage: tiny ‘local’ lesions pose great ‘global’ challenges. Chromosoma 114:146–154 [View Article][PubMed]
    [Google Scholar]
  32. Mašek F., Skorvaga M., Sedliaková M. ( 1989). Repression of damage-inducible (din) genes by the lexA3 mutation or by plasmid carrying the lexA gene; effect on pyrimidine dimer excision in UV-irradiated Escherichia coli . Gene 78:195–199 [View Article][PubMed]
    [Google Scholar]
  33. McGlynn P., Lloyd R. G. ( 2002). Recombinational repair and restart of damaged replication forks. Nat Rev Mol Cell Biol 3:859–870 [View Article][PubMed]
    [Google Scholar]
  34. McGlynn P., Lloyd R. G., Marians K. J. ( 2001). Formation of Holliday junctions by regression of nascent DNA in intermediates containing stalled replication forks: RecG stimulates regression even when the DNA is negatively supercoiled. Proc Natl Acad Sci U S A 98:8235–8240 [View Article][PubMed]
    [Google Scholar]
  35. McGrew D. A., Knight K. L. ( 2003). Molecular design and functional organization of the RecA protein. Crit Rev Biochem Mol Biol 38:385–432 [View Article][PubMed]
    [Google Scholar]
  36. Meddows T. R., Savory A. P., Grove J. I., Moore T., Lloyd R. G. ( 2005). RecN protein and transcription factor DksA combine to promote faithful recombinational repair of DNA double-strand breaks. Mol Microbiol 57:97–110 [View Article][PubMed]
    [Google Scholar]
  37. Michel B., Grompone G., Florès M. J., Bidnenko V. ( 2004). Multiple pathways process stalled replication forks. Proc Natl Acad Sci U S A 101:12783–12788 [View Article][PubMed]
    [Google Scholar]
  38. Misteli T., Soutoglou E. ( 2009). The emerging role of nuclear architecture in DNA repair and genome maintenance. Nat Rev Mol Cell Biol 10:243–254 [View Article][PubMed]
    [Google Scholar]
  39. Molina F., Skarstad K. ( 2004). Replication fork and SeqA focus distributions in Escherichia coli suggest a replication hyperstructure dependent on nucleotide metabolism. Mol Microbiol 52:1597–1612 [View Article][PubMed]
    [Google Scholar]
  40. Morigen O., Odsbu I., Skarstad K. ( 2009). Growth rate dependent numbers of SeqA structures organize the multiple replication forks in rapidly growing Escherichia coli . Genes Cells 14:643–657 [View Article][PubMed]
    [Google Scholar]
  41. Morimatsu K., Kowalczykowski S. C. ( 2003). RecFOR proteins load RecA protein onto gapped DNA to accelerate DNA strand exchange: a universal step of recombinational repair. Mol Cell 11:1337–1347 [View Article][PubMed]
    [Google Scholar]
  42. Nagashima K., Kubota Y., Shibata T., Sakaguchi C., Shinagawa H., Hishida T. ( 2006). Degradation of Escherichia coli RecN aggregates by ClpXP protease and its implications for DNA damage tolerance. J Biol Chem 281:30941–30946 [View Article][PubMed]
    [Google Scholar]
  43. Neher S. B., Villén J., Oakes E. C., Bakalarski C. E., Sauer R. T., Gygi S. P., Baker T. A. ( 2006). Proteomic profiling of ClpXP substrates after DNA damage reveals extensive instability within SOS regulon. Mol Cell 22:193–204 [View Article][PubMed]
    [Google Scholar]
  44. Norris V., den Blaauwen T., Cabin-Flaman A., Doi R. H., Harshey R., Janniere L., Jimenez-Sanchez A., Jin D. J., Levin P. A. & other authors ( 2007). Functional taxonomy of bacterial hyperstructures. Microbiol Mol Biol Rev 71:230–253 [View Article][PubMed]
    [Google Scholar]
  45. Odsbu I., Morigen O., Skarstad K. ( 2009). A reduction in ribonucleotide reductase activity slows down the chromosome replication fork but does not change its localization. PLoS ONE 4:e7617 [View Article][PubMed]
    [Google Scholar]
  46. Onogi T., Niki H., Yamazoe M., Hiraga S. ( 1999). The assembly and migration of SeqA-Gfp fusion in living cells of Escherichia coli . Mol Microbiol 31:1775–1782 [View Article][PubMed]
    [Google Scholar]
  47. Opperman T., Murli S., Smith B. T., Walker G. C. ( 1999). A model for a umuDC-dependent prokaryotic DNA damage checkpoint. Proc Natl Acad Sci U S A 96:9218–9223 [View Article][PubMed]
    [Google Scholar]
  48. Peters J. M., Nishiyama T. ( 2012). Sister chromatid cohesion. Cold Spring Harb Perspect Biol 4:a011130 [View Article][PubMed]
    [Google Scholar]
  49. Picksley S. M., Attfield P. V., Lloyd R. G. ( 1984). Repair of DNA double-strand breaks in Escherichia coli K12 requires a functional recN product. Mol Gen Genet 195:267–274 [View Article][PubMed]
    [Google Scholar]
  50. Pruteanu M., Baker T. A. ( 2009). Proteolysis in the SOS response and metal homeostasis in Escherichia coli . Res Microbiol 160:677–683 [View Article][PubMed]
    [Google Scholar]
  51. Reyes E. D., Patidar P. L., Uranga L. A., Bortoletto A. S., Lusetti S. L. ( 2010). RecN is a cohesin-like protein that stimulates intermolecular DNA interactions in vitro . J Biol Chem 285:16521–16529 [View Article][PubMed]
    [Google Scholar]
  52. Roberts J. W., Roberts C. W. ( 1981). Two mutations that alter the regulatory activity of E. coli recA protein. Nature 290:422–424 [View Article][PubMed]
    [Google Scholar]
  53. Rudolph C. J., Upton A. L., Lloyd R. G. ( 2007). Replication fork stalling and cell cycle arrest in UV-irradiated Escherichia coli . Genes Dev 21:668–681 [View Article][PubMed]
    [Google Scholar]
  54. Rupp W. D., Howard-Flanders P. ( 1968). Discontinuities in the DNA synthesized in an excision-defective strain of Escherichia coli following ultraviolet irradiation. J Mol Biol 31:291–304 [View Article][PubMed]
    [Google Scholar]
  55. Sassanfar M., Roberts J. W. ( 1990). Nature of the SOS-inducing signal in Escherichia coli. The involvement of DNA replication. J Mol Biol 212:79–96 [View Article][PubMed]
    [Google Scholar]
  56. Sedgwick S. G. ( 1975). Genetic and kinetic evidence for different types of postreplication repair in Escherichia coli B. J Bacteriol 123:154–161[PubMed]
    [Google Scholar]
  57. Shechter N., Zaltzman L., Weiner A., Brumfeld V., Shimoni E., Fridmann-Sirkis Y., Minsky A. ( 2013). Stress-induced condensation of bacterial genomes results in re-pairing of sister chromosomes: implications for double strand DNA break repair. J Biol Chem 288:25659–25667 [View Article][PubMed]
    [Google Scholar]
  58. Skarstad K., Boye E. ( 1988). Perturbed chromosomal replication in recA mutants of Escherichia coli . J Bacteriol 170:2549–2554[PubMed]
    [Google Scholar]
  59. Smith B. T., Grossman A. D., Walker G. C. ( 2002). Localization of UvrA and effect of DNA damage on the chromosome of Bacillus subtilis . J Bacteriol 184:488–493 [View Article][PubMed]
    [Google Scholar]
  60. Stokke C., Flåtten I., Skarstad K. ( 2012). An easy-to-use simulation program demonstrates variations in bacterial cell cycle parameters depending on medium and temperature. PLoS ONE 7:e30981 [View Article][PubMed]
    [Google Scholar]
  61. Ström L., Lindroos H. B., Shirahige K., Sjögren C. ( 2004). Postreplicative recruitment of cohesin to double-strand breaks is required for DNA repair. Mol Cell 16:1003–1015 [View Article][PubMed]
    [Google Scholar]
  62. Tessman E. S., Peterson P. K. ( 1985). Isolation of protease-proficient, recombinase-deficient recA mutants of Escherichia coli K-12. J Bacteriol 163:688–695[PubMed]
    [Google Scholar]
  63. Thoms B., Wackernagel W. ( 1987). Regulatory role of recF in the SOS response of Escherichia coli: impaired induction of SOS genes by UV irradiation and nalidixic acid in a recF mutant. J Bacteriol 169:1731–1736[PubMed]
    [Google Scholar]
  64. Torheim N. K., Boye E., Løbner-Olesen A., Stokke T., Skarstad K. ( 2000). The Escherichia coli SeqA protein destabilizes mutant DnaA204 protein. Mol Microbiol 37:629–638 [View Article][PubMed]
    [Google Scholar]
  65. Umezu K., Kolodner R. D. ( 1994). Protein interactions in genetic recombination in Escherichia coli. Interactions involving RecO and RecR overcome the inhibition of RecA by single-stranded DNA-binding protein. J Biol Chem 269:30005–30013[PubMed]
    [Google Scholar]
  66. Umezu K., Chi N. W., Kolodner R. D. ( 1993). Biochemical interaction of the Escherichia coli RecF, RecO, and RecR proteins with RecA protein and single-stranded DNA binding protein. Proc Natl Acad Sci U S A 90:3875–3879 [View Article][PubMed]
    [Google Scholar]
  67. Waldminghaus T., Skarstad K. ( 2009). The Escherichia coli SeqA protein. Plasmid 61:141–150 [View Article][PubMed]
    [Google Scholar]
  68. Waldminghaus T., Weigel C., Skarstad K. ( 2012). Replication fork movement and methylation govern SeqA binding to the Escherichia coli chromosome. Nucleic Acids Res 40:5465–5476 [View Article][PubMed]
    [Google Scholar]
  69. Waleh N. S., Stocker B. A. ( 1979). Effect of host lex, recA, recF, and uvrD genotypes on the ultraviolet light-protecting and related properties of plasmid R46 in Escherichia coli . J Bacteriol 137:830–838[PubMed]
    [Google Scholar]
  70. Watrin E., Peters J. M. ( 2006). Cohesin and DNA damage repair. Exp Cell Res 312:2687–2693 [View Article][PubMed]
    [Google Scholar]
  71. Weel-Sneve R., Kristiansen K. I., Odsbu I., Dalhus B., Booth J., Rognes T., Skarstad K., Bjørås M. ( 2013). Single transmembrane peptide DinQ modulates membrane-dependent activities. PLoS Genet 9:e1003260 [View Article][PubMed]
    [Google Scholar]
  72. Whitby M. C., Lloyd R. G. ( 1995). Altered SOS induction associated with mutations in recF, recO and recR . Mol Gen Genet 246:174–179 [View Article][PubMed]
    [Google Scholar]
  73. Yamazoe M., Adachi S., Kanaya S., Ohsumi K., Hiraga S. ( 2005). Sequential binding of SeqA protein to nascent DNA segments at replication forks in synchronized cultures of Escherichia coli . Mol Microbiol 55:289–298 [View Article][PubMed]
    [Google Scholar]
  74. Zimmerman S. B. ( 2006). Shape and compaction of Escherichia coli nucleoids. J Struct Biol 156:255–261 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.075051-0
Loading
/content/journal/micro/10.1099/mic.0.075051-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error