1887

Abstract

The ECF (extracytoplasmic function) alternative sigma factor, σ (AlgT/U), is required for expression of the promoter of the operon for alginate biosynthesis in Alginate production promotes chronic pulmonary infections by this opportunistic pathogen in patients with cystic fibrosis and chronic obstructive pulmonary disease. σ is normally sequestered, but its deregulation and activation occur either by mutation in (encoding an anti-sigma factor) or in response to envelope stress, such as inhibition of peptidoglycan synthesis. The σ stress response system includes many genes in addition to those for alginate. In the present study, we characterized an intergenic region between ORFs PA2559 and PA2560 in PAO1 for a σ-dependent, stress-responsive transcript, described here as PA2559.1. Northern analysis and transcript end-mapping indicated the PA2559.1 transcript was ~310 nt in length. Examination of the DNA sequence upstream of +1 revealed a σ core promoter motif, GAATTT-N-TCTGT, and site-directed mutagenesis confirmed this to be a σ-dependent promoter that was highly activated during cell wall stress. PA2559.1 also contained an ORF that demonstrated increased translational activity upon cell wall stress. As determined by mutant analysis, the protein encoded by PA2559.1 was shown to play a positive role in the σ-dependent activation of the promoter under stress in both sessile (i.e. biofilm) and planktonic conditions. Thus, it appeared to act as a stress response facilitator and so was named SrfA. The sequence of SrfA was found to be novel in nature and extremely well conserved only in , suggesting that it is of high evolutionary importance in this species.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081182-0
2015-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/161/1/30.html?itemId=/content/journal/micro/10.1099/mic.0.081182-0&mimeType=html&fmt=ahah

References

  1. Argaman L., Hershberg R., Vogel J., Bejerano G., Wagner E. G., Margalit H., Altuvia S. 2001; Novel small RNA-encoding genes in the intergenic regions of Escherichia coli . Curr Biol 11:941–950 [View Article][PubMed]
    [Google Scholar]
  2. Cezairliyan B. O., Sauer R. T. 2009; Control of Pseudomonas aeruginosa AlgW protease cleavage of MucA by peptide signals and MucB. Mol Microbiol 72:368–379 [View Article][PubMed]
    [Google Scholar]
  3. DeVries C. A., Ohman D. E. 1994; Mucoid-to-nonmucoid conversion in alginate-producing Pseudomonas aeruginosa often results from spontaneous mutations in algT, encoding a putative alternate sigma factor, and shows evidence for autoregulation. J Bacteriol 176:6677–6687[PubMed]
    [Google Scholar]
  4. Figurski D. H., Helinski D. R. 1979; Replication of an origin-containing derivative of plasmid RK2 dependent on a plasmid function provided in trans . Proc Natl Acad Sci U S A 76:1648–1652 [View Article][PubMed]
    [Google Scholar]
  5. Firoved A. M., Boucher J. C., Deretic V. 2002; Global genomic analysis of AlgU (σE)-dependent promoters (sigmulon) in Pseudomonas aeruginosa and implications for inflammatory processes in cystic fibrosis. J Bacteriol 184:1057–1064 [View Article][PubMed]
    [Google Scholar]
  6. Friedman L., Kolter R. 2004; Genes involved in matrix formation in Pseudomonas aeruginosa PA14 biofilms. Mol Microbiol 51:675–690 [View Article][PubMed]
    [Google Scholar]
  7. Govan J. R. W., Deretic V. 1996; Microbial pathogenesis in cystic fibrosis: mucoid Pseudomonas aeruginosa and Burkholderia cepacia . Microbiol Rev 60:539–574[PubMed]
    [Google Scholar]
  8. Holloway B. W. 1969; Genetics of Pseudomonas . Bacteriol Rev 33:419–443[PubMed]
    [Google Scholar]
  9. Jain S., Ohman D. E. 2004; Alginate biosynthesis. In Pseudomonas. Volume 3: Biosynthesis of Macromolecules and Molecular Metabolism pp. 53–81 Edited by Ramos J.-L. New York, NY: Kluwer; [View Article]
    [Google Scholar]
  10. Johansen J., Rasmussen A. A., Overgaard M., Valentin-Hansen P. 2006; Conserved small non-coding RNAs that belong to the sigmaE regulon: role in down-regulation of outer membrane proteins. J Mol Biol 364:1–8 [View Article][PubMed]
    [Google Scholar]
  11. Knutson C. A., Jeanes A. 1968; A new modification of the carbazole analysis: application to heteropolysaccharides. Anal Biochem 24:470–481 [View Article][PubMed]
    [Google Scholar]
  12. Leid J. G., Willson C. J., Shirtliff M. E., Hassett D. J., Parsek M. R., Jeffers A. K. 2005; The exopolysaccharide alginate protects Pseudomonas aeruginosa biofilm bacteria from IFN-gamma-mediated macrophage killing. J Immunol 175:7512–7518 [View Article][PubMed]
    [Google Scholar]
  13. Livny J., Waldor M. K. 2007; Identification of small RNAs in diverse bacterial species. Curr Opin Microbiol 10:96–101 [View Article][PubMed]
    [Google Scholar]
  14. Lonetto M. A., Brown K. L., Rudd K. E., Buttner M. J. 1994; Analysis of the Streptomyces coelicolor sigE gene reveals the existence of a subfamily of eubacterial RNA polymerase sigma factors involved in the regulation of extracytoplasmic functions. Proc Natl Acad Sci U S A 91:7573–7577 [View Article][PubMed]
    [Google Scholar]
  15. Martin D. W., Schurr M. J., Mudd M. H., Govan J. R. W., Holloway B. W., Deretic V. 1993; Mechanism of conversion to mucoidy in Pseudomonas aeruginosa infecting cystic fibrosis patients. Proc Natl Acad Sci U S A 90:8377–8381 [View Article][PubMed]
    [Google Scholar]
  16. Murphy T. F., Brauer A. L., Eschberger K., Lobbins P., Grove L., Cai X., Sethi S. 2008; Pseudomonas aeruginosa in chronic obstructive pulmonary disease. Am J Respir Crit Care Med 177:853–860 [View Article][PubMed]
    [Google Scholar]
  17. Pier G. B., Coleman F., Grout M., Franklin M., Ohman D. E. 2001; Role of alginate O acetylation in resistance of mucoid Pseudomonas aeruginosa to opsonic phagocytosis. Infect Immun 69:1895–1901 [View Article][PubMed]
    [Google Scholar]
  18. Qiu D., Eisinger V. M., Rowen D. W., Yu H. D. 2007; Regulated proteolysis controls mucoid conversion in Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 104:8107–8112 [View Article][PubMed]
    [Google Scholar]
  19. Qiu D., Eisinger V. M., Head N. E., Pier G. B., Yu H. D. 2008; ClpXP proteases positively regulate alginate overexpression and mucoid conversion in Pseudomonas aeruginosa . Microbiology 154:2119–2130 [View Article][PubMed]
    [Google Scholar]
  20. Ramsey D. M., Wozniak D. J. 2005; Understanding the control of Pseudomonas aeruginosa alginate synthesis and the prospects for management of chronic infections in cystic fibrosis. Mol Microbiol 56:309–322 [View Article][PubMed]
    [Google Scholar]
  21. Rashid M. H., Kornberg A. 2000; Inorganic polyphosphate is needed for swimming, swarming, and twitching motilities of Pseudomonas aeruginosa . Proc Natl Acad Sci U S A 97:4885–4890 [View Article][PubMed]
    [Google Scholar]
  22. Rhodius V. A., Suh W. C., Nonaka G., West J., Gross C. A. 2006; Conserved and variable functions of the sigmaE stress response in related genomes. PLoS Biol 4:e2 [View Article][PubMed]
    [Google Scholar]
  23. Schwarzmann S., Boring J. R. III 1971; Antiphagocytic effect of slime from a mucoid strain of Pseudomonas aeruginosa . Infect Immun 3:762–767[PubMed]
    [Google Scholar]
  24. Schweizer H. D. 1993; Small broad-host-range gentamycin resistance gene cassettes for site-specific insertion and deletion mutagenesis. Biotechniques 15:831–834[PubMed]
    [Google Scholar]
  25. Silo-Suh L., Suh S. J., Sokol P. A., Ohman D. E. 2002; A simple alfalfa seedling infection model for Pseudomonas aeruginosa strains associated with cystic fibrosis shows AlgT (sigma-22) and RhlR contribute to pathogenesis. Proc Natl Acad Sci U S A 99:15699–15704 [View Article][PubMed]
    [Google Scholar]
  26. Suh S. J., Silo-Suh L. A., Ohman D. E. 2004; Development of tools for the genetic manipulation of Pseudomonas aeruginosa . J Microbiol Methods 58:203–212 [View Article][PubMed]
    [Google Scholar]
  27. Urban J. H., Vogel J. 2008; Two seemingly homologous noncoding RNAs act hierarchically to activate glmS mRNA translation. PLoS Biol 6:e64 [View Article][PubMed]
    [Google Scholar]
  28. Winsor G. L., Van Rossum T., Lo R., Khaira B., Whiteside M. D., Hancock R. E., Brinkman F. S. 2009; Pseudomonas Genome Database: facilitating user-friendly, comprehensive comparisons of microbial genomes. Nucleic Acids Res 37:Database issueD483–D488 [View Article][PubMed]
    [Google Scholar]
  29. Wood L. F., Ohman D. E. 2009; Use of cell wall stress to characterize sigma 22 (AlgT/U) activation by regulated proteolysis and its regulon in Pseudomonas aeruginosa . Mol Microbiol 72:183–201 [View Article][PubMed]
    [Google Scholar]
  30. Wood L. F., Ohman D. E. 2012; Identification of genes in the σ22 regulon of Pseudomonas aeruginosa required for cell envelope homeostasis in either the planktonic or the sessile mode of growth.. MBio 3:e00094-12 [CrossRef]
    [Google Scholar]
  31. Wood L. F., Leech A. J., Ohman D. E. 2006; Cell wall-inhibitory antibiotics activate the alginate biosynthesis operon in Pseudomonas aeruginosa: roles of sigma (AlgT) and the AlgW and Prc proteases. Mol Microbiol 62:412–426 [View Article][PubMed]
    [Google Scholar]
  32. Wozniak D. J., Ohman D. E. 1991; Pseudomonas aeruginosa AlgB, a two-component response regulator of the NtrC family, is required for algD transcription. J Bacteriol 173:1406–1413[PubMed]
    [Google Scholar]
  33. Yu H., Schurr M. J., Deretic V. 1995; Functional equivalence of Escherichia coli σE and Pseudomonas aeruginosa AlgU: E. coli rpoE restores mucoidy and reduces sensitivity to reactive oxygen intermediates in algU mutants of P. aeruginosa . J Bacteriol 177:3259–3268[PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081182-0
Loading
/content/journal/micro/10.1099/mic.0.081182-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error