1887

Abstract

can acquire a higher tolerance to tetracycline by increasing the gene dosage of its resistance gene . In this study, we estimated the multiplication effect of on tetracycline tolerance. Cells harbouring multiple copies of were found to comprise approximately 30 % of the total tetracycline-resistant cell population when selected on medium containing 10 µg tetracycline ml. Disruption of resulted in a significant decrease in the frequency of amplification. Although four direct repeats exist around , the majority of amplicons were found to be flanked by non-homologous sequences, indicating that the initial duplication of can occur largely through RecA-independent recombination. The correlation between the copy number and the MIC values for tetracycline indicated that more than three copies of were required for tolerance to 10 µg tetracycline ml. Thus, the RecA-dependent expansion step appears to be necessary for developing significant tetracycline tolerance mediated by amplification.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.081505-0
2014-11-01
2024-04-19
Loading full text...

Full text loading...

/deliver/fulltext/micro/160/11/2474.html?itemId=/content/journal/micro/10.1099/mic.0.081505-0&mimeType=html&fmt=ahah

References

  1. Akanuma G., Suzuki S., Yano K., Nanamiya H., Natori Y., Namba E., Watanabe K., Tagami K., Takeda T. & other authors ( 2013). Single mutations introduced in the essential ribosomal proteins L3 and S10 cause a sporulation defect in Bacillus subtilis. J Gen Appl Microbiol 59:105–117 [View Article][PubMed]
    [Google Scholar]
  2. Amano H., Shishido K. ( 1995). Bacillus subtilis strains carry highly homologous direct repeat sequences on their chromosomes. Biosci Biotechnol Biochem 59:2149–2150 [View Article][PubMed]
    [Google Scholar]
  3. Amano H., Ives C. L., Bott K. F., Shishido K. ( 1991). A limited number of Bacillus subtilis strains carry a tetracycline-resistance determinant at a site close to the origin of replication. Biochim Biophys Acta 1088:251–258 [View Article][PubMed]
    [Google Scholar]
  4. Anderson R. P., Roth J. R. ( 1977). Tandem genetic duplications in phage and bacteria. Annu Rev Microbiol 31:473–505 [View Article][PubMed]
    [Google Scholar]
  5. Andersson D. I., Hughes D. ( 2009). Gene amplification and adaptive evolution in bacteria. Annu Rev Genet 43:167–195 [View Article][PubMed]
    [Google Scholar]
  6. Carginale V., Trinchella F., Capasso C., Scudiero R., Parisi E. ( 2004). Gene amplification and cold adaptation of pepsin in Antarctic fish. A possible strategy for food digestion at low temperature. Gene 336:195–205 [View Article][PubMed]
    [Google Scholar]
  7. Chapman J. W., Piggot P. J. ( 1987). Analysis of the inhibition of sporulation of Bacillus subtilis caused by increasing the number of copies of the spo0F gene. J Gen Microbiol 133:2079–2088[PubMed]
    [Google Scholar]
  8. Edlund T., Normark S. ( 1981). Recombination between short DNA homologies causes tandem duplication. Nature 292:269–271 [View Article][PubMed]
    [Google Scholar]
  9. Gaines T. A., Zhang W., Wang D., Bukun B., Chisholm S. T., Shaner D. L., Nissen S. J., Patzoldt W. L., Tranel P. J. & other authors ( 2010). Gene amplification confers glyphosate resistance in Amaranthus palmeri. Proc Natl Acad Sci U S A 107:1029–1034 [View Article][PubMed]
    [Google Scholar]
  10. Gijzen M., Kuflu K., Moy P. ( 2006). Gene amplification of the Hps locus in Glycine max. BMC Plant Biol 6:6 [View Article][PubMed]
    [Google Scholar]
  11. Hashiguchi K., Tanimoto A., Nomura S., Yamane K., Yoda K., Harada S., Mori M., Furusato T., Takatsuki A. & other authors ( 1986). Amplification of the amyE-tmrB region on the chromosome in tunicamycin-resistant cells of Bacillus subtilis.. Mol Gen Genet 204:36–43 [View Article][PubMed]
    [Google Scholar]
  12. Hastings P. J. ( 2007). Adaptive amplification. Crit Rev Biochem Mol Biol 42:271–283 [View Article][PubMed]
    [Google Scholar]
  13. Hastings P. J., Bull H. J., Klump J. R., Rosenberg S. M. ( 2000). Adaptive amplification: an inducible chromosomal instability mechanism. Cell 103:723–731 [View Article][PubMed]
    [Google Scholar]
  14. Huang T., Campbell J. L. ( 1995). Amplification of a circular episome carrying an inverted repeat of the DFR1 locus and adjacent autonomously replicating sequence element of Saccharomyces cerevisiae.. J Biol Chem 270:9607–9614 [View Article][PubMed]
    [Google Scholar]
  15. Ives C. L., Bott K. F. ( 1990). Characterization of chromosomal DNA amplifications with associated tetracycline resistance in Bacillus subtilis.. J Bacteriol 172:4936–4944[PubMed]
    [Google Scholar]
  16. Lengauer C., Kinzler K. W., Vogelstein B. ( 1998). Genetic instabilities in human cancers. Nature 396:643–649 [View Article][PubMed]
    [Google Scholar]
  17. Nanamiya H., Kasai K., Nozawa A., Yun C. S., Narisawa T., Murakami K., Natori Y., Kawamura F., Tozawa Y. ( 2008). Identification and functional analysis of novel (p)ppGpp synthetase genes in Bacillus subtilis. Mol Microbiol 67:291–304 [View Article][PubMed]
    [Google Scholar]
  18. Näsvall J., Sun L., Roth J. R., Andersson D. I. ( 2012). Real-time evolution of new genes by innovation, amplification, and divergence. Science 338:384–387 [View Article][PubMed]
    [Google Scholar]
  19. Nichols B. P., Guay G. G. ( 1989). Gene amplification contributes to sulfonamide resistance in Escherichia coli. Antimicrob Agents Chemother 33:2042–2048 [View Article][PubMed]
    [Google Scholar]
  20. Nicoloff H., Perreten V., McMurry L. M., Levy S. B. ( 2006). Role for tandem duplication and Lon protease in AcrAB-TolC- dependent multiple antibiotic resistance (Mar) in an Escherichia coli mutant without mutations in marRAB or acrRAB. J Bacteriol 188:4413–4423 [View Article][PubMed]
    [Google Scholar]
  21. Nicoloff H., Perreten V., Levy S. B. ( 2007). Increased genome instability in Escherichia coli lon mutants: relation to emergence of multiple-antibiotic-resistant (Mar) mutants caused by insertion sequence elements and large tandem genomic amplifications. Antimicrob Agents Chemother 51:1293–1303 [View Article][PubMed]
    [Google Scholar]
  22. Piggot P. J., Curtis C. A. ( 1987). Analysis of the regulation of gene expression during Bacillus subtilis sporulation by manipulation of the copy number of spo-lacZ fusions. J Bacteriol 169:1260–1266[PubMed]
    [Google Scholar]
  23. Reams A. B., Kofoid E., Kugelberg E., Roth J. R. ( 2012). Multiple pathways of duplication formation with and without recombination (RecA) in Salmonella enterica. Genetics 192:397–415 [View Article][PubMed]
    [Google Scholar]
  24. Sandegren L., Andersson D. I. ( 2009). Bacterial gene amplification: implications for the evolution of antibiotic resistance. Nat Rev Microbiol 7:578–588 [View Article][PubMed]
    [Google Scholar]
  25. Whoriskey S. K., Nghiem V. H., Leong P. M., Masson J. M., Miller J. H. ( 1987). Genetic rearrangements and gene amplification in Escherichia coli: DNA sequences at the junctures of amplified gene fusions. Genes Dev 1:227–237 [View Article][PubMed]
    [Google Scholar]
  26. Williams G., Smith I. ( 1979). Chromosomal mutations causing resistance to tetracycline in Bacillus subtilis.. Mol Gen Genet 177:23–29 [View Article][PubMed]
    [Google Scholar]
  27. Wilson C. R., Morgan A. E. ( 1985). Chromosomal-DNA amplification in Bacillus subtilis. J Bacteriol 163:445–453[PubMed]
    [Google Scholar]
  28. Yanai K., Murakami T., Bibb M. ( 2006). Amplification of the entire kanamycin biosynthetic gene cluster during empirical strain improvement of Streptomyces kanamyceticus. Proc Natl Acad Sci U S A 103:9661–9666 [View Article][PubMed]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.081505-0
Loading
/content/journal/micro/10.1099/mic.0.081505-0
Loading

Data & Media loading...

Supplements

Supplementary material 1

PDF
This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error