1887

Abstract

Bacteriophages play an important role in bacterial virulence and phenotypic variation. It has been shown that filamentous bacteriophage Pf4 of strain PAO1 mediates the formation of small-colony variants (SCVs) in biofilms. This morphology type is associated with parameters of poor lung function in cystic fibrosis patients, and SCVs are often more resistant to antibiotics than wild-type cells. strain PA14 also contains a Pf1-like filamentous prophage, which is designated Pf5, and is highly homologous to Pf4. Since PA14 produces SCVs very efficiently in biofilms grown in static cultures, the role of Pf5 in SCV formation under these conditions was investigated. The presence of the Pf5 replicative form in total DNA from SCVs and wild-type cells was detected, but it was not possible to detect the Pf5 major coat protein by immunoblot analysis in PA14 SCV cultures. This suggests that the Pf5 filamentous phage is not present at high densities in the PA14 SCVs. Consistent with these results, we were unable to detect expression in SCV cultures and SCV colonies. The SCV variants formed under static conditions were not linked to Pf5 phage activity, since Pf5 insertion mutants with decreased or no production of the Pf5 RF produced SCVs as efficiently as the wild-type strain. Finally, analysis of 48 clinical isolates showed no association between the presence of Pf1-like filamentous phages and the ability to form SCVs under static conditions; this suggests that filamentous phages are generally not involved in the emergence of SCVs.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003533-0
2007-06-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/6/1790.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003533-0&mimeType=html&fmt=ahah

References

  1. Boles B. R., Thoendel M., Singh P. K. 2004; From the cover: self-generated diversity produces ‘insurance effects’ in biofilm communities. Proc Natl Acad Sci U S A 101:16630–16635 [CrossRef]
    [Google Scholar]
  2. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in Escherichia coli. J Mol Biol 41:459–472 [CrossRef]
    [Google Scholar]
  3. de Lorenzo V., Timmis K. N. 1994; Analysis and construction of stable phenotypes in Gram-negative bacteria with Tn 5 - and Tn 10 -derived minitransposons. Methods Enzymol 235:386–405
    [Google Scholar]
  4. Deziel E., Comeau Y., Villemur R. 2001; Initiation of biofilm formation by Pseudomonas aeruginosa 57RP correlates with emergence of hyperpiliated and highly adherent phenotypic variants deficient in swimming, swarming, and twitching motilities. J Bacteriol 183:1195–1204 [CrossRef]
    [Google Scholar]
  5. Drenkard E., Ausubel F. M. 2002; Pseudomonas biofilm formation and antibiotic resistance are linked to phenotypic variation. Nature 416:740–743 [CrossRef]
    [Google Scholar]
  6. Furste J. P., Pansegrau W., Frank R., Blocker H., Scholz P., Bagdasarian M., Lanka E. 1986; Molecular cloning of the plasmid RP4 primase region in a multi-host-range tacP expression vector. Gene 48:119–131 [CrossRef]
    [Google Scholar]
  7. Hanahan D. 1983; Studies on transformation of Escherichia coli with plasmids. J Mol Biol 166:557–580 [CrossRef]
    [Google Scholar]
  8. Häussler S., Ziegler I., Lottel A., Rohde M., Wehmhohner D., Saravanamuthu S., Tummler B., Steinmetz I., von Gotz F. 2003; Highly adherent small-colony variants of Pseudomonas aeruginosa in cystic fibrosis lung infection. J Med Microbiol 52:295–301 [CrossRef]
    [Google Scholar]
  9. Hill D. F., Short N. J., Perham R. N., Petersen G. B. 1991; DNA sequence of the filamentous bacteriophage Pf1. J Mol Biol 218:349–364 [CrossRef]
    [Google Scholar]
  10. Hoiby N., Krogh Johansen H., Moser C., Song Z., Ciofu O., Kharazmi A. 2001; Pseudomonas aeruginosa and the in vitro and in vivo biofilm mode of growth. Microbes Infect 3:23–35 [CrossRef]
    [Google Scholar]
  11. Kirisits M. J., Prost L., Starkey M., Parsek M. R. 2005; Characterization of colony morphology variants isolated from Pseudomonas aeruginosa biofilms. Appl Environ Microbiol 71:4809–4821 [CrossRef]
    [Google Scholar]
  12. Kuo M. Y., Yang M. K., Chen W. P., Kuo T. T. 2000; High-frequency interconversion of turbid and clear plaque strains of bacteriophage f1 and associated host cell death. Can J Microbiol 46:841–847 [CrossRef]
    [Google Scholar]
  13. Kutsukake K., Iino T. 1980; Inversions of specific DNA segments in flagellar phase variation of Salmonella and inversion systems of bacteriophages P1 and Mu. Proc Natl Acad Sci U S A 77:7338–7341 [CrossRef]
    [Google Scholar]
  14. Liberati N. T., Urbach J. M., Miyata S., Lee D. G., Drenkard E., Wu G., Villanueva J., Wei T., Ausubel F. M. 2006; An ordered, nonredundant library of Pseudomonas aeruginosa strain PA14 transposon insertion mutants. Proc Natl Acad Sci U S A 103:2833–2838 [CrossRef]
    [Google Scholar]
  15. Lin-Chao S., Chen W. T., Wong T. T. 1992; High copy number of the pUC plasmid results from a Rom/Rop-suppressible point mutation in RNA II. Mol Microbiol 6:3385–3393 [CrossRef]
    [Google Scholar]
  16. Llamas M. A., Sparrius M., Kloet R., Jimenez C. R., Vandenbroucke-Grauls C., Bitter W. 2006; The heterologous siderophores ferrioxamine B and ferrichrome activate signaling pathways in Pseudomonas aeruginosa. J Bacteriol 188:1882–1891 [CrossRef]
    [Google Scholar]
  17. Miller J. H. 1972 Experiments in Molecular Genetics Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  18. Rahme L. G., Stevens E. J., Wolfort S. F., Shao J., Tompkins R. G., Ausubel F. M. 1995; Common virulence factors for bacterial pathogenicity in plants and animals. Science 268:1899–1902 [CrossRef]
    [Google Scholar]
  19. Sambrook J., Maniatis T., Fritsch E. F. 1989 Molecular Cloning: a Laboratory Manual Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  20. Singh P. K., Schaefer A. L., Parsek M. R., Moninger T. O., Welsh M. J., Greenberg E. P. 2000; Quorum-sensing signals indicate that cystic fibrosis lungs are infected with bacterial biofilms. Nature 407:762–764 [CrossRef]
    [Google Scholar]
  21. Spaink H. P., Okker R. J. H., Wijffelman C. A., Pees E., Lughtenberg B. J. J. 1987; Promoters in the nodulation region of the Rhizobium leguminosarum Sym plasmid pRLJ1I. Plant Mol Biol 9:27–39 [CrossRef]
    [Google Scholar]
  22. Stover C. K., Pham X. Q., Erwin A. L., Mizoguchi S. D., Warrener P., Hickey M. J., Brinkman F. S. L., Hufnagle W. O., Kowalik D. J. other authors 2000; Complete genome sequence of Pseudomonas aeruginosa PAO1, an opportunistic pathogen. Nature 406:959–964 [CrossRef]
    [Google Scholar]
  23. Tominaga A. 1997; The site-specific recombinase encoded by pinD in Shigella dysenteriae is due to the presence of a defective Mu prophage. Microbiology 143:2057–2063 [CrossRef]
    [Google Scholar]
  24. Webb J. S., Lau M., Kjelleberg S. 2004; Bacteriophage and phenotypic variation in Pseudomonas aeruginosa biofilm development. J Bacteriol 186:8066–8073 [CrossRef]
    [Google Scholar]
  25. Whiteley M., Bangera M. G., Bumgarner R. E., Parsek M. R., Teitzel G. M., Lory S., Greenberg E. P. 2001; Gene expression in Pseudomonas aeruginosa biofilms. Nature 413:860–864 [CrossRef]
    [Google Scholar]
  26. Wolfgang M. C., Kulasekara B. R., Liang X., Boyd D., Wu K., Yang Q., Miyada C. G., Lory S. 2003; Conservation of genome content and virulence determinants among clinical and environmental isolates of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 100:8484–8489 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003533-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003533-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error