1887

Abstract

Quorum sensing (QS) denotes a density-dependent mode of inter-bacterial communication based on signal transmitter molecules. Active QS is present during chronic infections with the opportunistic pathogen in immunocompromised patients. The authors have previously demonstrated a QS-regulated tolerance of biofilm bacteria to the antimicrobial properties of polymorphonuclear leukocytes (PMNs). The precise QS-regulated effect on the PMNs is, however, unknown. Incubation of human PMNs with supernatants from dense cultures showed that the QS-competent induced rapid necrosis of the PMNs. This mechanism was also observed in mouse lungs infected with , and in sputum obtained from -infected patients with cystic fibrosis. Evidence is presented that the necrotic effect was caused by rhamnolipids, production of which is QS controlled. The results demonstrate the potential of the QS system to facilitate infections with by disabling the PMNs, which are a major first line of defence of the host. Furthermore, the study emphasizes the inhibition of QS as a target for the treatment of infections with .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/003863-0
2007-05-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/5/1329.html?itemId=/content/journal/micro/10.1099/mic.0.2006/003863-0&mimeType=html&fmt=ahah

References

  1. Baltimore R. S., Christie C. D., Smith G. J. 1989; Immunohistopathologic localization of Pseudomonas aeruginosa in lungs from patients with cystic fibrosis. Implications for the pathogenesis of progressive lung deterioration. Am Rev Respir Dis 140:1650–1661 [CrossRef]
    [Google Scholar]
  2. Beatson S. A., Whitchurch C. B., Semmler A. B., Mattick J. S. 2002; Quorum sensing is not required for twitching motility in Pseudomonas aeruginosa. J Bacteriol 184:3598–3604 [CrossRef]
    [Google Scholar]
  3. Bjarnsholt T., Jensen P. O., Burmolle M., Hentzer M., Haagensen J. A. J., Hougen H. P., Calum H., Madsen K. G., Moser C. other authors 2005a; Pseudomonas aeruginosa tolerance to tobramycin, hydrogen peroxide and polymorphonuclear leukocytes is quorum-sensing dependent. Microbiology 151:373–383 [CrossRef]
    [Google Scholar]
  4. Bjarnsholt T., Jensen P. O., Rasmussen T. B., Christophersen L., Calum H., Hentzer M., Hougen H. P., Rygaard J., Moser C. other authors 2005b; Garlic blocks quorum sensing and promotes rapid clearing of pulmonary Pseudomonas aeruginosa infections. Microbiology 151:3873–3880 [CrossRef]
    [Google Scholar]
  5. Calfee M. W., Shelton J. G., McCubrey J. A., Pesci E. C. 2005; Solubility and bioactivity of the Pseudomonas quinolone signal are increased by a Pseudomonas aeruginosa -produced surfactant. Infect Immun 73:878–882 [CrossRef]
    [Google Scholar]
  6. Christensen B. B., Sternberg C., Andersen J. B., Nielsen A. T., Givskov M., Molin S., Palmer R. J., Jr. 1999; Molecular tools for study of biofilm physiology. Methods Enzymol 310:20–42
    [Google Scholar]
  7. Diggle S. P., Winzer K., Chhabra S. R., Worrall K. E., Camara M., Williams P. 2003; The Pseudomonas aeruginosa quinolone signal molecule overcomes the cell density-dependency of the quorum sensing hierarchy, regulates rhl -dependent genes at the onset of stationary phase and can be produced in the absence of LasR. Mol Microbiol 50:29–43 [CrossRef]
    [Google Scholar]
  8. Diggle S. P., Cornelis P., Williams P., Camara M. 2006; 4-Quinolone signalling in Pseudomonas aeruginosa : old molecules, new perspectives. Int J Med Microbiol 296:83–91 [CrossRef]
    [Google Scholar]
  9. Donlan R. M., Costerton J. W. 2002; Biofilms: survival mechanisms of clinically relevant microorganisms. Clin Microbiol Rev 15:167–193 [CrossRef]
    [Google Scholar]
  10. Doring G., Goldstein W., Roll A., Schiotz P. O., Høiby N., Botzenhart K. 1985; Role of Pseudomonas aeruginosa exoenzymes in lung infections of patients with cystic fibrosis. Infect Immun 49:557–562
    [Google Scholar]
  11. Drenkard E. 2003; Antimicrobial resistance of Pseudomonas aeruginosa biofilms. Microbes Infect 5:1213–1219 [CrossRef]
    [Google Scholar]
  12. Essar D. W., Eberly L., Hadero A., Crawford I. P. 1990; Identification and characterization of genes for a second anthranilate synthase in Pseudomonas aeruginosa : interchangeability of the two anthranilate synthases and evolutionary implications. J Bacteriol 172:884–900
    [Google Scholar]
  13. Fuqua C., Winans S. C., Greenberg E. P. 1996; Census and consensus in bacterial ecosystems: the LuxR–LuxI family of quorum-sensing transcriptional regulators. Annu Rev Microbiol 50:727–751 [CrossRef]
    [Google Scholar]
  14. Gibson R. L., Burns J. L., Ramsey B. W. 2003; Pathophysiology and management of pulmonary infections in cystic fibrosis. Am J Respir Crit Care Med 168:918–951 [CrossRef]
    [Google Scholar]
  15. Hentzer M., Wu H., Andersen J. B., Riedel K., Rasmussen T. B., Bagge N., Kumar N., Schembri M. A., Song Z. other authors 2003; Attenuation of Pseudomonas aeruginosa virulence by quorum sensing inhibitors. EMBO J 22:3803–3815 [CrossRef]
    [Google Scholar]
  16. Heurlier K., Denervaud V., Haas D. 2006; Impact of quorum sensing on fitness of Pseudomonas aeruginosa. Int J Med Microbiol 296:93–102 [CrossRef]
    [Google Scholar]
  17. Høiby N. 1974; Pseudomonas aeruginosa infection in cystic fibrosis. Relationship between mucoid strains of Pseudomonas aeruginosa and the humoral immune response. Acta Pathol Microbiol Scand [B] Microbiol Immunol 82:551–558
    [Google Scholar]
  18. Jensen P. Ø., Moser C., Kobayashi O., Hougen H. P., Kharazmi A., Høiby N. 2004; Faster activation of polymorphonuclear neutrophils in resistant mice during early innate response to Pseudomonas aeruginosa lung infection. Clin Exp Immunol 137:478–485 [CrossRef]
    [Google Scholar]
  19. Johansen H. K., Høiby N. 1992; Seasonal onset of initial colonisation and chronic infection with Pseudomonas aeruginosa in patients with cystic fibrosis in Denmark. Thorax 47:109–111 [CrossRef]
    [Google Scholar]
  20. Johnson M. K., Boese-Marrazzo D. 1980; Production and properties of heat-stable extracellular hemolysin from Pseudomonas aeruginosa. Infect Immun 29:1028–1033
    [Google Scholar]
  21. Kharazmi A., Doring G., Høiby N., Valerius N. H. 1984a; Interaction of Pseudomonas aeruginosa alkaline protease and elastase with human polymorphonuclear leukocytes in vitro. Infect Immun 43:161–165
    [Google Scholar]
  22. Kharazmi A., Høiby N., Doring G., Valerius N. H. 1984b; Pseudomonas aeruginosa exoproteases inhibit human neutrophil chemiluminescence. Infect Immun 44:587–591
    [Google Scholar]
  23. Knowles M. R., Boucher R. C. 2002; Mucus clearance as a primary innate defense mechanism for mammalian airways. J Clin Invest 109:571–577 [CrossRef]
    [Google Scholar]
  24. Koch C., Høiby N. 1993; Pathogenesis of cystic fibrosis. Lancet 341:1065–1069 [CrossRef]
    [Google Scholar]
  25. Kownatzki R., Tummler B., Doring G. 1987; Rhamnolipid of Pseudomonas aeruginosa in sputum of cystic fibrosis patients. Lancet 1:1026–1027
    [Google Scholar]
  26. Lethem M. I., James S. L., Marriott C., Burke J. F. 1990; The origin of DNA associated with mucus glycoproteins in cystic fibrosis sputum. Eur Respir J 3:19–23
    [Google Scholar]
  27. Mathee K., Ciofu O., Sternberg C., Lindum P. W., Campbell J. I., Jensen P., Johnsen A. H., Givskov M. M., Ohman D. E. other authors 1999; Mucoid conversion of Pseudomonas aeruginosa by hydrogen peroxide: a mechanism for virulence activation in the cystic fibrosis lung. Microbiology 145:1349–1357 [CrossRef]
    [Google Scholar]
  28. Matsui H., Verghese M. W., Kesimer M., Schwab U. E., Randell S. H., Sheehan J. K., Grubb B. R., Boucher R. C. 2005; Reduced three-dimensional motility in dehydrated airway mucus prevents neutrophil capture and killing bacteria on airway epithelial surfaces. J Immunol 175:1090–1099 [CrossRef]
    [Google Scholar]
  29. McClure C. D., Schiller N. L. 1992; Effects of Pseudomonas aeruginosa rhamnolipids on human monocyte-derived macrophages. J Leukoc Biol 51:97–102
    [Google Scholar]
  30. McKnight S. L., Iglewski B. H., Pesci E. C. 2000; The Pseudomonas quinolone signal regulates rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 182:2702–2708 [CrossRef]
    [Google Scholar]
  31. Middleton B., Rodgers H. C., Camara M., Knox A. J., Williams P., Hardman A. 2002; Direct detection of N -acylhomoserine lactones in cystic fibrosis sputum. FEMS Microbiol Lett 207:1–7 [CrossRef]
    [Google Scholar]
  32. Pedersen S. S., Shand G. H., Hansen B. L., Hansen G. N. 1990; Induction of experimental chronic Pseudomonas aeruginosa lung infection with P. aeruginosa entrapped in alginate microspheres. APMIS 98:203–211 [CrossRef]
    [Google Scholar]
  33. Pesci E. C., Pearson J. P., Seed P. C., Iglewski B. H. 1997; Regulation of las and rhl quorum sensing in Pseudomonas aeruginosa. J Bacteriol 179:3127–3132
    [Google Scholar]
  34. Pesci E. C., Milbank J. B., Pearson J. P., McKnight S., Kende A. S., Greenberg E. P., Iglewski B. H. 1999; Quinolone signaling in the cell-to-cell communication system of Pseudomonas aeruginosa. Proc Natl Acad Sci U S A 96:11229–11234 [CrossRef]
    [Google Scholar]
  35. Pritchard D. I. 2006; Immune modulation by Pseudomonas aeruginosa quorum-sensing signal molecules. Int J Med Microbiol 296:111–116 [CrossRef]
    [Google Scholar]
  36. Rumbaugh K. P., Griswold J. A., Iglewski B. H., Hamood A. N. 1999; Contribution of quorum sensing to the virulence of Pseudomonas aeruginosa in burn wound infections. Infect Immun 67:5854–5862
    [Google Scholar]
  37. Schaber J. A., Carty N. L., McDonald N. A., Graham E. D., Cheluvappa R., Griswold J. A., Hamood A. N. 2004; Analysis of quorum sensing-deficient clinical isolates of Pseudomonas aeruginosa. J Med Microbiol 53:841–853 [CrossRef]
    [Google Scholar]
  38. Schuster M., Lostroh C. P., Ogi T., Greenberg E. P. 2003; Identification, timing, and signal specificity of Pseudomonas aeruginosa quorum-controlled genes: a transcriptome analysis. J Bacteriol 185:2066–2079 [CrossRef]
    [Google Scholar]
  39. Shah P. L., Scott S. F., Knight R. A., Hodson M. E. 1996; The effects of recombinant human DNase on neutrophil elastase activity and interleukin-8 levels in the sputum of patients with cystic fibrosis. Eur Respir J 9:531–534 [CrossRef]
    [Google Scholar]
  40. Shryock T., Silver A. S., Baschbach M. W., Kramer J. C. 1984; Effect of Pseudomonas aeruginosa rhamnolipid on human neutrophil migration. Curr Microbiol 10:323–328 [CrossRef]
    [Google Scholar]
  41. Sim L., Ward O. P., Li Z. Y. 1997; Production and characterisation of a biosurfactant isolated from Pseudomonas aeruginosa UW-1. J Ind Microbiol Biotechnol 19:232–238 [CrossRef]
    [Google Scholar]
  42. Storey D. G., Ujack E. E., Rabin H. R., Mitchell I. 1998; Pseudomonas aeruginosa lasR transcription correlates with the transcription of lasA , lasB , and toxA in chronic lung infections associated with cystic fibrosis. Infect Immun 66:2521–2528
    [Google Scholar]
  43. Tateda K., Ishii Y., Horikawa M., Matsumoto T., Miyairi S., Pechere J. C., Standiford T. J., Ishiguro M., Yamaguchi K. 2003; The Pseudomonas aeruginosa autoinducer N -3-oxododecanoyl homoserine lactone accelerates apoptosis in macrophages and neutrophils. Infect Immun 71:5785–5793 [CrossRef]
    [Google Scholar]
  44. Wagner V. E., Bushnell D., Passador L., Brooks A. I., Iglewski B. H. 2003; Microarray analysis of Pseudomonas aeruginosa quorum-sensing regulons: effects of growth phase and environment. J Bacteriol 185:2080–2095 [CrossRef]
    [Google Scholar]
  45. Watt A. P., Courtney J., Moore J., Ennis M., Elborn J. S. 2005; Neutrophil cell death, activation and bacterial infection in cystic fibrosis. Thorax 60:659–664 [CrossRef]
    [Google Scholar]
  46. Worlitzsch D., Tarran R., Ulrich M., Schwab U., Cekiki A., Meyer K. C., Birrer P., Bellon G., Berger J. other authors 2002; Effects of reduced mucus oxygen concentration in airway Pseudomonas infections of cystic fibrosis patients. J Clin Invest 109:317–325 [CrossRef]
    [Google Scholar]
  47. Wu H., Song Z., Givskov M., Doring G., Worlitzsch D., Mathee K., Rygaard J., Høiby N. 2001; Pseudomonas aeruginosa mutations in lasI and rhlI quorum sensing systems result in milder chronic lung infection. Microbiology 147:1105–1113
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/003863-0
Loading
/content/journal/micro/10.1099/mic.0.2006/003863-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error