1887

Abstract

The significance of the gene product on chemotrophic sulfur oxidation of was investigated. The thioredoxin SoxS was purified, and the N-terminal amino acid sequence identified SoxS as the gene product. The wild-type formed thiosulfate-oxidizing activity and Sox proteins during mixotrophic growth with succinate plus thiosulfate, while there was no activity, and only traces of Sox proteins, under heterotrophic conditions. The homogenote mutant strain GBΩS is unable to express the genes, of which encodes a transcriptional regulator. Strain GBΩS cultivated mixotrophically showed about 22 % of the specific thiosulfate-dependent O uptake rate of the wild-type, and when cultivated heterotrophically it produced 35 % activity. However, under both mixotrophic and heterotrophic conditions, strain GBΩS formed Sox proteins essential for sulfur oxidation at the same high level as the wild-type produced them during mixotrophic growth. Genetic complementation of strain GBΩS with restored the activity upon mixotrophic and heterotrophic growth. Chemical complementation by reductants such as -cysteine, DTT and tris(2-carboxyethyl)phosphine also restored the activity of strain GBΩS in the presence of chloramphenicol, which is an inhibitor of protein synthesis. The data demonstrate that SoxS plays a key role in activation of the Sox enzyme system, and this suggests that SoxS is part of a novel type of redox control in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004143-0
2007-04-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/4/1081.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004143-0&mimeType=html&fmt=ahah

References

  1. Appia-Ayme C., Berks B. C. 2002; SoxV, an orthologue of the CcdA disulfide transporter, is involved in thiosulfate oxidation in Rhodovulum sulfidophilum and reduces the periplasmic thioredoxin SoxW. Biochem Biophys Res Commun 296:737–741 [CrossRef]
    [Google Scholar]
  2. Bardischewsky F., Friedrich C. G. 2001; The shxVW locus is essential for oxidation of inorganic sulfur and molecular hydrogen by Paracoccus pantotrophus GB17: a novel function in lithotrophy. FEMS Microbiol Lett 202:215–220 [CrossRef]
    [Google Scholar]
  3. Bardischewsky F., Fischer J., Friedrich C. G., Höller B. 2006; SoxV transfers electrons to the periplasm of Paracoccus pantotrophus – an essential reaction for chemotrophic sulfur oxidation. Microbiology 152:465–472 [CrossRef]
    [Google Scholar]
  4. Bardwell J. C., Lee J.-O., Jander G., Martin N., Belin D., Beckwith J. 1993; A pathway for disulphide bond formation in vivo . Proc Natl Acad Sci U S A 90:1038–1042 [CrossRef]
    [Google Scholar]
  5. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  6. Chung C. T., Niemela S. L., Miller R. H. 1989; One-step preparation of competent Escherichia coli : transformation and storage of bacterial cells in the same solution. Proc Natl Acad Sci U S A 86:2172–2175 [CrossRef]
    [Google Scholar]
  7. Felsenstein J. 1989; phylip – phylogeny inference package (version 3.2. Cladistics 5:164–166
    [Google Scholar]
  8. Fischer J., Quentmeier A., Kostka S., Kraft R., Friedrich C. G. 1996; Purification and characterization of the hydrogenase from Thiobacillus ferrooxidans . Arch Microbiol 165:289–296 [CrossRef]
    [Google Scholar]
  9. Friedrich C. G., Quentmeier A., Bardischewsky F., Rother D., Kraft R., Kostka S., Prinz H. 2000; Novel genes coding for lithotrophic sulfur oxidation of Paracoccus pantotrophus GB17. J Bacteriol 182:4677–4687 [CrossRef]
    [Google Scholar]
  10. Friedrich C. G., Rother D., Bardischewsky F., Quentmeier A., Fischer J. 2001; Oxidation of reduced inorganic sulfur compounds by bacteria: emergence of a common mechanism?. Appl Environ Microbiol 67:2873–2882 [CrossRef]
    [Google Scholar]
  11. Friedrich C. G., Bardischewsky F., Rother D., Quentmeier A., Fischer J. 2005; Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259 [CrossRef]
    [Google Scholar]
  12. Kieser T. 1984; Factors affecting the isolation of ccc DNA from Streptomyces lividans and Escherichia coli . Plasmid 12:19–36 [CrossRef]
    [Google Scholar]
  13. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  14. Ludwig W., Mittenhuber G., Friedrich C. G. 1993; Transfer of Thiosphaera pantotropha to Paracoccus denitrificans . Int J Syst Bacteriol 43:363–367 [CrossRef]
    [Google Scholar]
  15. Nakai K., Kaneshisa M. 1991; Expert system for predicting protein localization sites in Gram-negative bacteria. Proteins 11:95–110 [CrossRef]
    [Google Scholar]
  16. Page R. D. M. 1996; treeview: an application to display phylogenetic trees on personal computers. Comput Applic Biosci 12:357–358
    [Google Scholar]
  17. Pfitzner U., Odenwald A., Ostermann T., Weingard L., Ludwig B., Richter O. M. 1998; Cytochrome c oxidase (heme aa 3) from Paracoccus denitrificans : analysis of mutations in putative proton channels of subunit I. Bioenerg Biomembr 30:89–97 [CrossRef]
    [Google Scholar]
  18. Rainey F. A., Kelly D. P., Stackebrandt E., Burghardt J., Hiraishi A., Katayama Y., Wood A. P. 1999; A re-evaluation of the taxonomy of Paracoccus denitrificans and a proposal for the combination Paracoccus pantotrophus comb. nov. Int J Syst Bacteriol 49:645–651 [CrossRef]
    [Google Scholar]
  19. Robertson L. A., Kuenen J. G. 1983; Thiosphaera pantotropha gen. nov. sp. nov: a facultatively anaerobic, facultative autotrophic sulphur bacterium. J Gen Microbiol 129:2847–2855
    [Google Scholar]
  20. Rother D., Henrich H.-J., Quentmeier A., Bardischewsky F., Friedrich C. G. 2001; Novel genes of the sox gene cluster, mutagenesis of the flavoprotein SoxF, and evidence for a general sulfur oxidizing system in Paracoccus pantotrophus GB17. J Bacteriol 183:4499–4508 [CrossRef]
    [Google Scholar]
  21. Rother D., Orawski G., Bardischewsky F., Friedrich C. G. 2005; SoxRS-mediated regulation of chemotrophic sulfur oxidation in Paracoccus pantotrophus . Microbiology 151:1707–1716 [CrossRef]
    [Google Scholar]
  22. Sambongi Y., Ferguson S. J. 1994; Specific thiol compounds complement deficiency in c -type cytochrome biogenesis in Escherichia coli carrying a mutation in a membrane bound disulphide isomerase-like protein. FEBS Lett 353:235–238 [CrossRef]
    [Google Scholar]
  23. Sambrook J., Maniatis T., Fritsch E. F. 1989 Molecular Cloning: a Laboratory Manual , 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
    [Google Scholar]
  24. Simon R., Priefer U., Pühler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–790 [CrossRef]
    [Google Scholar]
  25. Towbin H., Staehelin T., Gordon J. 1979; Electrophoretic transfer of proteins from polyacrylamide gels to nitrocellulose sheets: procedure and some applications. Proc Natl Acad Sci U S A 76:6762–6766
    [Google Scholar]
  26. Weber K., Pringle J. R., Osborn M. 1972; Measurement of molecular weights by electrophoresis on SDS-acrylamide gel. Methods Enzymol 26:3–27
    [Google Scholar]
  27. Yanisch-Perron C., Vieira J., Messing J. 1985; Improved M13 phage cloning vectors and host strains: nucleotide sequences of the M13mp18 and pUC19 vectors. Gene 33:103–119 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004143-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004143-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error