1887

Abstract

A basic pattern of gene expression and of relative expression levels during different growth phases was obtained for R grown on different carbon sources. The gene cluster was transcribed as a mono- or polycistronic mRNA, depending on the growth phase. The 1.4 kb () and 2.3 kb () mRNAs were expressed in the early through late exponential phases, whereas the 3.7 kb (-) and 5.4 kb (-) mRNAs were only detected in the mid-exponential phase. All other glycolytic genes except and were transcribed as monocistronic mRNAs under all tested conditions. Identification and alignment of the promoter regions of the transcriptional start sites of glycolytic genes revealed strong similarities to the consensus promoter sequences of Gram-positive bacteria. All genes involved in glycolysis were coordinately expressed in medium containing glucose. Growth in the presence of glucose gave rise to abundant expression of most glycolytic genes, with the level of transcript being the highest. Glucose depletion led to a rapid repression of most glycolytic genes and a corresponding two- to fivefold increased expression of the gluconeogenic genes and , which are induced by pyruvate, lactate, acetate and/or other organic acids.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2006/004366-0
2007-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2190.html?itemId=/content/journal/micro/10.1099/mic.0.2006/004366-0&mimeType=html&fmt=ahah

References

  1. Barreiro C., Gonzalez-Lavado E., Patek M., Martin J.-F. 2004; Transcriptional analysis of the groES-groEL1, groEL2, and dnaK genes in Corynebacterium glutamicum : characterization of heat shock-induced promoters. J Bacteriol 186:4813–4817 [CrossRef]
    [Google Scholar]
  2. Brewster N. K., Val D. L., Walker M. E., Wallace J. C. 1994; Regulation of pyruvate carboxylase isozyme ( PYC1 , PYC2 ) gene expression in Saccharomyces cerevisiae during fermentative and nonfermentative growth. Arch Biochem Biophys 311:62–71 [CrossRef]
    [Google Scholar]
  3. Bruckner R., Titgemeyer F. 2002; Carbon catabolite repression in bacteria: choice of the carbon source and autoregulatory limitation of sugar utilization. FEMS Microbiol Lett 209:141–148 [CrossRef]
    [Google Scholar]
  4. Chang B. Y., Shyu Y. T., Doi R. H. 1992; The interaction between Bacillus subtilis sigma-A ( σ A) factor and RNA polymerase with promoters. Biochimie 74:601–612 [CrossRef]
    [Google Scholar]
  5. Chassagnole C., Diano A., Letisse F., Lindley N. D. 2003; Metabolic network analysis during fed-batch cultivation of Corynebacterium glutamicum for pantothenic acid production: first quantitative data and analysis of by-product formation. J Biotechnol 104:261–272 [CrossRef]
    [Google Scholar]
  6. de Crombrugghe B., Busby S., Buc H. 1984; Cyclic AMP receptor protein: role in transcription activation. Science 224:831–838 [CrossRef]
    [Google Scholar]
  7. Dominguez H., Rollin C., Guyonvarch A., Guerquin-Kern J. L., Cocaign-Bousquet M., Lindley N. D. 1998; Carbon-flux distribution in the central metabolic pathways of Corynebacterium glutamicum during growth on fructose. Eur J Biochem 254:96–102 [CrossRef]
    [Google Scholar]
  8. Dover L. G., Cerdeno-Tarraga A. M., Pallen M. J., Parkhill J., Besra G. S. 2004; Comparative cell wall core biosynthesis in the mycolated pathogens, Mycobacterium tuberculosis and Corynebacterium diphtheriae. FEMS Microbiol Rev 28:225–250 [CrossRef]
    [Google Scholar]
  9. Eikmanns B. J. 1992; Identification, sequence analysis, and expression of a Corynebacterium glutamicum gene cluster encoding the three glycolytic enzymes glyceraldehyde-3-phosphate dehydrogenase, 3-phosphoglycerate kinase, and triosephosphate isomerase. J Bacteriol 174:6076–6086
    [Google Scholar]
  10. Eikmanns B. 2005; Central metabolism: tricarboxylic acid cycle and anaplerotic reactions. In Handbook on Corynebacterium glutamicum pp 241–276 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  11. Fillinger S., Boschi-Muller S., Azza S., Dervyn E., Branlant G., Aymerich S. 2000; Two glyceraldehyde-3-phosphate dehydrogenases with opposite physiological roles in a nonphotosynthetic bacterium. J Biol Chem 275:14031–14037 [CrossRef]
    [Google Scholar]
  12. Funke G., Bernard K. A., von Graevenitz A., Clarridge J. E. III 1997; Clinical microbiology of coryneform bacteria. Clin Microbiol Rev 10:125–159
    [Google Scholar]
  13. Gerstmeir R., Wendisch V. F., Schnicke S., Ruan H., Farwick M., Reinscheid D., Eikmanns B. J. 2003; Acetate metabolism and its regulation in Corynebacterium glutamicum. J Biotechnol 104:99–122 [CrossRef]
    [Google Scholar]
  14. Gourdon P., Baucher M. F., Lindley N. D., Guyonvarch A. 2000; Cloning of the malic enzyme gene from Corynebacterium glutamicum and role of the enzyme in lactate metabolism. Appl Environ Microbiol 66:2981–2987 [CrossRef]
    [Google Scholar]
  15. Gubler M., Jetten M., Lee S. H., Sinskey A. J. 1994; Cloning of the pyruvate kinase gene ( pyk ) of Corynebacterium glutamicum and site-specific inactivation of pyk in a lysine-producing Corynebacterium lactofermentum strain. Appl Environ Microbiol 60:2494–2500
    [Google Scholar]
  16. Haldenwang W. G. 1995; The sigma factors of Bacillus subtilis. Microbiol Rev 59:1–30
    [Google Scholar]
  17. Harley C. B., Reynolds R. P. 1987; Analysis of E. coli promoter sequences. Nucleic Acids Res 15:2343–2361 [CrossRef]
    [Google Scholar]
  18. Hauf J., Zimmermann F. K., Muller S. 2000; Simultaneous genomic overexpression of seven glycolytic enzymes in the yeast Saccharomyces cerevisiae. Enzyme Microb Technol 26:688–698 [CrossRef]
    [Google Scholar]
  19. Hawley D. K., McClure W. R. 1983; Compilation and analysis of Escherichia coli promoter DNA sequences. Nucleic Acids Res 11:2237–2255 [CrossRef]
    [Google Scholar]
  20. Hayashi M., Mizoguchi H., Shiraishi N., Obayashi M., Nakagawa S., Imai J., Watanabe S., Ota T., Ikeda M. 2002; Transcriptome analysis of acetate metabolism in Corynebacterium glutamicum using a newly developed metabolic array. Biosci Biotechnol Biochem 66:1337–1344 [CrossRef]
    [Google Scholar]
  21. Huser A. T., Becker A., Brune I., Dondrup M., Kalinowski J., Plassmeier J., Puhler A., Wiegrabe I., Tauch A. 2003; Development of a Corynebacterium glutamicum DNA microarray and validation by genome-wide expression profiling during growth with propionate as carbon source. J Biotechnol 106:269–286 [CrossRef]
    [Google Scholar]
  22. Huser A. T., Chassagnole C., Lindley N. D., Merkamm M., Guyonvarch A., Elisakova V., Patek M., Kalinowski J., Brune I. other authors 2005; Rational design of a Corynebacterium glutamicum pantothenate production strain and its characterization by metabolic flux analysis and genome-wide transcriptional profiling. Appl Environ Microbiol 71:3255–3268 [CrossRef]
    [Google Scholar]
  23. Ikeda M., Nakagawa S. 2003; The Corynebacterium glutamicum genome: features and impacts on biotechnological processes. Appl Microbiol Biotechnol 62:99–109 [CrossRef]
    [Google Scholar]
  24. Inui M., Murakami S., Okino S., Kawaguchi H., Vertes A. A., Yukawa H. 2004; Metabolic analysis of Corynebacterium glutamicum during lactate and succinate productions under oxygen deprivation conditions. J Mol Microbiol Biotechnol 7:182–196 [CrossRef]
    [Google Scholar]
  25. Kalinowski J., Bathe B., Bartels D., Bischoff N., Bott M., Burkovski A., Dusch N., Eggeling L., Eikmanns B. J. other authors 2003; The complete Corynebacterium glutamicum ATCC 13032 genome sequence and its impact on the production of aspartate-derived amino acids and vitamins. J Biotechnol 104:5–25 [CrossRef]
    [Google Scholar]
  26. Kim H. J., Kim T. H., Kim Y., Lee H. S. 2004; Identification and characterization of glxR , a gene involved in regulation of glyoxylate bypass in Corynebacterium glutamicum. J Bacteriol 186:3453–3460 [CrossRef]
    [Google Scholar]
  27. Kinoshita S., Tanaka K. 1972; Glutamic acid. In The Microbial Production of Amino Acids pp 263–324 Edited by Yamada K. New York: John Wiley;
    [Google Scholar]
  28. Kinoshita S., Udaka S., Shimono M. 1957; Studies on the amino acid fermentation Part I. Production of l-glutamic acid by various microorganisms. J Gen Microbiol 3:193–205 [CrossRef]
    [Google Scholar]
  29. Koffas M. A., Jung G. Y., Aon J. C., Stephanopoulos G. 2002; Effect of pyruvate carboxylase overexpression on the physiology of Corynebacterium glutamicum. Appl Environ Microbiol 68:5422–5428 [CrossRef]
    [Google Scholar]
  30. Kolb A., Busby S., Buc H., Garges S., Adhya S. 1993; Transcriptional regulation by cAMP and its receptor protein. Annu Rev Biochem 62:749–795 [CrossRef]
    [Google Scholar]
  31. Kotrba P., Inui M., Yukawa H. 2001; The ptsI gene encoding enzyme I of the phosphotransferase system of Corynebacterium glutamicum. Biochem Biophys Res Commun 289:1307–1313 [CrossRef]
    [Google Scholar]
  32. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  33. Letek M., Valbuena N., Ramos A., Ordonez E., Gil J. A., Mateos L. M. 2006; Characterization and use of catabolite-repressed promoters from gluconate genes in Corynebacterium glutamicum. J Bacteriol 188:409–423 [CrossRef]
    [Google Scholar]
  34. Liebl W. 1991; The genus Corynebacterium – nonmedical. In The Prokaryotes pp 1157–1171 Edited by Balows A., Dworkin M., Harder W., Schleifer K. H., Trüper H. G. New York: Springer-Verlag;
    [Google Scholar]
  35. Liebl W. 2005; Corynebacterium taxonomy. In Handbook on Corynebacterium Glutamicum pp 9–34 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  36. Lorca G. L., Chung Y. J., Barabote R. D., Weyler W., Schilling C. H., Saier M. H. Jr 2005; Catabolite repression and activation in Bacillus subtilis : dependency on CcpA, HPr, and HprK. J Bacteriol 187:7826–7839 [CrossRef]
    [Google Scholar]
  37. Ludwig H., Homuth G., Schmalisch M., Dyka F. M., Hecker M., Stulke J. 2001; Transcription of glycolytic genes and operons in Bacillus subtilis : evidence for the presence of multiple levels of control of the gapA operon. Mol Microbiol 41:409–422 [CrossRef]
    [Google Scholar]
  38. Meng W., Belyaeva T., Savery N. J., Busby S. J., Ross W. E., Gaal T., Gourse R. L., Thomas M. S. 2001; UP element-dependent transcription at the Escherichia coli rrnB P1 promoter: positional requirements and role of the RNA polymerase alpha subunit linker. Nucleic Acids Res 29:4166–4178 [CrossRef]
    [Google Scholar]
  39. Miwa Y., Fujita Y. 2001; Involvement of two distinct catabolite-responsive elements in catabolite repression of the Bacillus subtilis myo-inositol ( iol ) operon. J Bacteriol 183:5877–5884 [CrossRef]
    [Google Scholar]
  40. Muffler A., Bettermann S., Haushalter M., Horlein A., Neveling U., Schramm M., Sorgenfrei O. 2002; Genome-wide transcription profiling of Corynebacterium glutamicum after heat shock and during growth on acetate and glucose. J Biotechnol 98:255–268 [CrossRef]
    [Google Scholar]
  41. Netzer R., Krause M., Rittmann D., Peters-Wendisch P. G., Eggeling L., Wendisch V. F., Sahm H. 2004; Roles of pyruvate kinase and malic enzyme in Corynebacterium glutamicum for growth on carbon sources requiring gluconeogenesis. Arch Microbiol 182:354–363 [CrossRef]
    [Google Scholar]
  42. Omumasaba C. A., Okai N., Inui M., Yukawa H. 2004; Corynebacterium glutamicum glyceraldehyde-3-phosphate dehydrogenase isoforms with opposite, ATP-dependent regulation. J Mol Microbiol Biotechnol 8:91–103 [CrossRef]
    [Google Scholar]
  43. Park S. Y., Kim H. K., Yoo S. K., Oh T. K., Lee J. K. 2000; Characterization of glk , a gene coding for glucose kinase of Corynebacterium glutamicum. FEMS Microbiol Lett 188:209–215 [CrossRef]
    [Google Scholar]
  44. Patek M., Nesvera J., Guyonvarch A., Reyes O., Leblon G. 2003; Promoters of Corynebacterium glutamicum. J Biotechnol 104:311–323 [CrossRef]
    [Google Scholar]
  45. Perez-Martin J., Rojo F., de Lorenzo V. 1994; Promoters responsive to DNA bending: a common theme in prokaryotic gene expression. Microbiol Rev 58:268–290
    [Google Scholar]
  46. Peters-Wendisch P. G., Kreutzer C., Kalinowski J., Patek M., Sahm H., Eikmanns B. J. 1998; Pyruvate carboxylase from Corynebacterium glutamicum : characterization, expression and inactivation of the pyc gene. Microbiology 144:915–927 [CrossRef]
    [Google Scholar]
  47. Predich M., Doukhan L., Nair G., Smith I. 1995; Characterization of RNA polymerase and two sigma-factor genes from Mycobacterium smegmatis. Mol Microbiol 15:355–366 [CrossRef]
    [Google Scholar]
  48. Riedel C., Rittmann D., Dangel P., Mockel B., Petersen S., Sahm H., Eikmanns B. J. 2001; Characterization of the phosphoenolpyruvate carboxykinase gene from Corynebacterium glutamicum and significance of the enzyme for growth and amino acid production. J Mol Microbiol Biotechnol 3:573–583
    [Google Scholar]
  49. Ross W., Aiyar S. E., Salomon J., Gourse R. L. 1998; Escherichia coli promoters with UP elements of different strengths: modular structure of bacterial promoters. J Bacteriol 180:5375–5383
    [Google Scholar]
  50. Sahm H., Eggeling L., Eikmanns B., Kramer R. 1995; Metabolic design in amino acid producing bacterium Corynebacterium glutamicum. FEMS Microbiol Rev 16:243–252 [CrossRef]
    [Google Scholar]
  51. Saier M. H. Jr, Chauvaux S., Deutscher J., Reizer J., Ye J. J. 1995; Protein phosphorylation and regulation of carbon metabolism in gram-negative versus gram-positive bacteria. Trends Biochem Sci 20:267–271 [CrossRef]
    [Google Scholar]
  52. Sauer U., Treuner A., Buchholz M., Santangelo J., Durre P. 1994; Sporulation and primary sigma factor homologous genes in Clostridium acetobutylicum. J Bacteriol 176:6572–6582
    [Google Scholar]
  53. Schreiner M. E., Fiur D., Holatko J., Patek M., Eikmanns B. J. 2005; E1 enzyme of the pyruvate dehydrogenase complex in Corynebacterium glutamicum : molecular analysis of the gene and phylogenetic aspects. J Bacteriol 187:6005–6018 [CrossRef]
    [Google Scholar]
  54. Schwinde J. W., Thum-Schmitz N., Eikmanns B. J., Sahm H. 1993; Transcriptional analysis of the gap-pgk-tpi-ppc gene cluster of Corynebacterium glutamicum. J Bacteriol 175:3905–3908
    [Google Scholar]
  55. Schwinde J. W., Hertz P. F., Sahm H., Eikmanns B. J., Guyonvarch A. 2001; Lipoamide dehydrogenase from Corynebacterium glutamicum : molecular and physiological analysis of the lpd gene and characterization of the enzyme. Microbiology 147:2223–2231
    [Google Scholar]
  56. Stulke J., Hillen W. 2000; Regulation of carbon catabolism in Bacillus subtilis. Annu Rev Microbiol 54:849–880 [CrossRef]
    [Google Scholar]
  57. Wittmann C., De Graaf A. A. 2005; Metabolic flux analysis in Corynebacterium glutamicum . In Handbook on Corynebacterium glutamicum pp 277–304 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  58. Yokota A., Lindley N. D. 2005; Central metabolism: sugar uptake and conversion. In Handbook on Corynebacterium glutamicum pp 215–240 Edited by Eggeling L., Bott M. Boca Raton, FL: CRC Press;
    [Google Scholar]
  59. Yoshida K., Kobayashi K., Miwa Y., Kang C. M., Matsunaga M., Yamaguchi H., Tojo S., Yamamoto M., Nishi R. other authors 2001; Combined transcriptome and proteome analysis as a powerful approach to study genes under glucose repression in Bacillus subtilis. Nucleic Acids Res 29:683–692 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2006/004366-0
Loading
/content/journal/micro/10.1099/mic.0.2006/004366-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error