1887

Abstract

The Calvin–Benson–Bassham (CBB) cycle has been extensively studied in proteobacteria, cyanobacteria, algae and plants, but hardly at all in Gram-positive bacteria. Some characteristics of ribulose bisphosphate carboxylase/oxygenase (RuBisCO) and a cluster of potential CBB cycle genes in a Gram-positive bacterium are described in this study with two species of (Gram-positive, facultatively autotrophic, mineral sulfide-oxidizing acidophiles). In contrast to the Gram-negative, iron-oxidizing acidophile , grew poorly autotrophically unless the CO concentration was enhanced over that in air. However, the RuBisCO of each organism showed similar affinities for CO and for ribulose 1,5-bisphosphate, and similar apparent derepression of activity under CO limitation. The red-type, form I RuBisCO of was confirmed as closely related to that of the anoxygenic phototroph . Eight genes potentially involved in the CBB cycle in were clustered in the order , , , , , , and .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/006262-0
2007-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/7/2231.html?itemId=/content/journal/micro/10.1099/mic.0.2007/006262-0&mimeType=html&fmt=ahah

References

  1. Ashida H., Danchin A., Yokota A. 2005; Was photosynthetic RuBisCO recruited by acquisitive evolution from RuBisCO-like proteins involved in sulfur metabolism?. Res Microbiol 156:611–618 [CrossRef]
    [Google Scholar]
  2. Beudeker R. F., Cannon G. C., Kuenen J. G., Shively J. M. 1980; Relations between d-ribulose-1,5-bisphosphate carboxylase, carboxysomes and CO2 fixing capacity in the obligate chemolithotroph Thiobacillus neapolitanus grown under different limitations in the chemostat. Arch Microbiol 124:185–189
    [Google Scholar]
  3. Bowien B. 1977; RuBisCO from Paracoccus denitrificans. FEMS Microbiol Lett 2:263–266 [CrossRef]
    [Google Scholar]
  4. Bowien B., Kusian B. 2002; Genetics and control of CO2 assimilation in the chemoautotroph Ralstonia eutropha. Arch Microbiol 178:85–93 [CrossRef]
    [Google Scholar]
  5. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. 2003; Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500 [CrossRef]
    [Google Scholar]
  6. Clark D. A. 1995 The study of acidophilic, moderately thermophilic iron-oxidizing bacteria PhD Thesis University of Warwick;
    [Google Scholar]
  7. Clark D. A., Norris P. R. 1996; Acidimicrobium ferrooxidans gen. nov., sp. nov.: mixed culture ferrous iron oxidation with Sulfobacillus species. Microbiology 142:785–790 [CrossRef]
    [Google Scholar]
  8. Cook C. M., Lanaras T., Wood A. P., Codd G. A., Kelly D. P. 1991; Kinetic properties of ribulose bisphosphate carboxylase/oxygenase from Thiobacillus thyasiris , the putative symbiont of Thyasira flexuosa (Montagu), a bivalve mussel. J Gen Microbiol 137:1491–1496 [CrossRef]
    [Google Scholar]
  9. Delwiche C. F., Palmer J. D. 1996; Rampant horizontal transfer and duplication of rubisco genes in eubacteria and plastids. Mol Biol Evol 13:873–882 [CrossRef]
    [Google Scholar]
  10. Dew D. W., McEwan K., Bowker C., van Buuren C. 1999; Bioleaching of base metal sulphide concentrates: a comparison of mesophile and thermophile bacterial cultures. In Biohydrometallurgy and the Environment toward the Mining of the 21st Century, part A pp 229–238 Edited by Amils R., Ballester A. Amsterdam: Elsevier;
    [Google Scholar]
  11. Dubbs J. M., Tabita F. R. 2004; Regulators of nonsulfur purple phototrophic bacteria and the interactive control of CO2 assimilation, nitrogen fixation, hydrogen metabolism and energy metabolism. FEMS Microbiol Rev 28:353–376 [CrossRef]
    [Google Scholar]
  12. Felsenstein J. 2002 phylip (Phylogeny Inference Package), version 3.6a3. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  13. Figge R. M., Schubert M., Brinkmann H., Cerff R. 1999; Glyceraldehyde-3-phosphate dehydrogenase gene diversity in eubacteria and eukaryotes: evidence for intra- and inter-kingdom gene transfer. Mol Biol Evol 16:429–440 [CrossRef]
    [Google Scholar]
  14. Gibson J. L., Tabita F. R. 1977; Different molecular forms of RuBisCO from Rhodobacter sphaeroides. J Biol Chem 252:943–949
    [Google Scholar]
  15. Gibson J. L., Tabita F. R. 1996; The molecular regulation of the reductive pentose phosphate pathway in Proteobacteria and Cyanobacteria. Arch Microbiol 166:141–150 [CrossRef]
    [Google Scholar]
  16. Gibson J. L., Tabita F. R. 1997; Analysis of the cbbXYZ operon in Rhodobacter sphaeroides. J Bacteriol 179:663–669
    [Google Scholar]
  17. Hansen S., Vollan V. B., Hough E., Andersen K. 1999; The crystal structure of rubisco from Alcaligenes eutrophus reveals a novel central eight-stranded β -barrel formed by β -strands from four subunits. J Mol Biol 288:609–621 [CrossRef]
    [Google Scholar]
  18. Hanson T. E., Tabita F. R. 2001; A ribulose-1,5-bisphosphate carboxylase/oxygenase (RubisCO)-like protein from Chlorobium tepidum that is involved with sulfur metabolism and the response to oxidative stress. Proc Natl Acad Sci U S A 98:4397–4402 [CrossRef]
    [Google Scholar]
  19. Harrison D. H. T., Runquist J. A., Holub A., Miziorko H. M. 1998; The crystal structure of phosphoribulokinase from Rhodobacter sphaeroides reveals a fold similar to that of adenylate kinase. Biochemistry 37:5074–5085 [CrossRef]
    [Google Scholar]
  20. Holden P. J., Brown R. W. 1993; Amplification of ribulose bisphosphate carboxylase/oxygenase large subunit (RuBisCO LSU) gene fragments from Thiobacillus ferrooxidans and a moderate thermophile using polymerase chain reaction. FEMS Microbiol Rev 11:19–30 [CrossRef]
    [Google Scholar]
  21. Holuigue L., Herrera L., Phillips O. M., Young M., Allende J. E. 1987; CO2 fixation by mineral-leaching bacteria: characteristics of the ribulose bisphosphate carboxylase-oxygenase of Thiobacillus ferrooxidans. Biotechnol Appl Biochem 9:497–505 [CrossRef]
    [Google Scholar]
  22. Horken K. M., Tabita F. R. 1999; Closely related form I ribulose bisphosphate carboxylase/oxygenase molecules that possess different CO2/O2 substrate specificities. Arch Biochem Biophys 361:183–194 [CrossRef]
    [Google Scholar]
  23. Jordan D. B., Ogren W. L. 1981; Species variation in the specificity of ribulose-bisphosphate carboxylase-oxygenase. Nature 291:513–515 [CrossRef]
    [Google Scholar]
  24. Kusian B., Bowien B. 1997; Organization and regulation of cbb CO2 assimilation genes in autotrophic bacteria. FEMS Microbiol Rev 21:135–155 [CrossRef]
    [Google Scholar]
  25. Maier U.-G., Fraunholz M., Zauner S., Penny S., Douglas S. 2000; A nucleomorph-encoded CbbX and the phylogeny of RuBisCo regulators. Mol Biol Evol 17:576–583 [CrossRef]
    [Google Scholar]
  26. Martin W., Schnarrenberger C. 1997; The evolution of the Calvin cycle from prokaryotic to eukaryotic chromosomes: a case study of functional redundancy in ancient pathways through endosymbiosis. Curr Genet 32:1–18 [CrossRef]
    [Google Scholar]
  27. Miller P. C. 1997; The design and operating practice of bacterial oxidation plant using moderate thermophiles (the Bactech process). In Biomining pp 81–102 Edited by Rawlings D. E. Berlin: Springer;
    [Google Scholar]
  28. Miziorko H. M. 1998; Phosphoribulokinase: current perspectives on the structure/function basis for regulation and catalysis. In Advances in Enzymology and Related Areas of Molecular Biology vol. 74Mechanisms of Enzyme Action, part B pp 95–127 Edited by Purich D. L. New York: Wiley;
    [Google Scholar]
  29. Norris P. R., Clark D. A., Owen J. P., Waterhouse S. 1996; Characteristics of Sulfobacillus acidophilus sp. nov. and other moderately thermophilic mineral-sulphide-oxidizing bacteria. Microbiology 142:775–783 [CrossRef]
    [Google Scholar]
  30. Ochman H., Ayala F. J., Hartl D. L. 1993; Use of polymerase chain reaction to amplify segments outside boundaries of known sequences. Methods Enzymol 218:309–321
    [Google Scholar]
  31. Pierce J. W., McCurry S. D., Mulligan R. M., Tolbert N. E. 1982; Activation and assay of RuBisCO. Methods Enzymol 89:47–55
    [Google Scholar]
  32. Plaumann M., Pelzer-Reith B., Martin W. F., Schnarrenberger C. 1997; Multiple recruitment of class-I aldolase to chloroplasts and eubacterial origin of eukaryotic class-II aldolases revealed by cDNAs from Euglena gracilis. Curr Genet 31:430–438 [CrossRef]
    [Google Scholar]
  33. Runquist J. A., Miziorko H. M. 2006; Functional contribution of a conserved, mobile loop histidine of phosphoribulokinase. Protein Sci 15:837–842 [CrossRef]
    [Google Scholar]
  34. Schenk G., Layfield R., Candy J. M., Duggleby R. G., Nixon P. F. 1997; Molecular evolutionary analysis of the thiamine-diphosphate-dependent enzyme, transketolase. J Mol Evol 44:552–572 [CrossRef]
    [Google Scholar]
  35. Shively J. M., Meijer W. G., van Keulen G. 1998; Something from almost nothing: carbon dioxide fixation in chemoautotrophs. Annu Rev Microbiol 52:191–230 [CrossRef]
    [Google Scholar]
  36. Smith A. L., Kelly D. P., Wood A. P. 1980; Metabolism of Thiobacillus A2 grown under autotrophic, mixotrophic and heterotrophic conditions in chemostat culture. J Gen Microbiol 121:127–138
    [Google Scholar]
  37. Spreitzer R. J. 2003; Role of the small subunit in ribulose-1,5-bisphosphate carboxylase/oxygenase. Arch Biochem Biophys 414:141–149 [CrossRef]
    [Google Scholar]
  38. Sprenger G. A. 1995; Genetics of pentose-phosphate pathway enzymes of Escherichia coli K-12. Arch Microbiol 164:324–330 [CrossRef]
    [Google Scholar]
  39. Sugawara H., Yamamoto H., Shibata N., Inoue T., Okada S., Miyake C., Yokota A., Kai Y. 1999; Crystal structure of carboxylase reaction-oriented ribulose 1,5-bisphosphate carboxylase oxygenase from a thermophilic red alga, Galdieria partita. J Biol Chem 274:15655–15661 [CrossRef]
    [Google Scholar]
  40. Tourova T. P., Spiridonova E. M., Slobodova N. V., Boulygina E. S., Keppen O. I., Kuznetsov B. B., Ivanovsky R. N. 2006; Phylogeny of anoxygenic filamentous phototrophic bacteria of the family Oscillochloridaceae as inferred from comparative analyses of the rrs, cbbL , and nifH genes. Microbiology (English translation of Mikrobiologiya ) 75:192–200 [CrossRef]
    [Google Scholar]
  41. van den Bergh E. R. E., Baker S. C., Raggers R. J., Terpstra P., Woudstra E. C., Dijkhuizen L., Meijer W. G. 1996; Primary structure and phylogeny of the Calvin Cycle enzymes transketolase and fructosebisphosphate aldolase of Xanthobacter flavus. J Bacteriol 178:888–893
    [Google Scholar]
  42. Watson G. M. F., Tabita F. R. 1997; Microbial ribulose 1,5-bisphosphate carboxylase/oxygenase: a molecule for phylogenetic and enzymological investigation. FEMS Microbiol Lett 146:13–22 [CrossRef]
    [Google Scholar]
  43. Wood A. P., Kelly D. P. 1984; Autotrophic and mixotrophic growth and metabolism of some moderately thermoacidophilic iron-oxidizing bacteria. In Planetary Ecology pp 251–262 Edited by Caldwell D. E., Brierley J. A., Brierley C. L. New York: Van Nostrand Reinhold;
    [Google Scholar]
  44. Yeoh H.-H., Badger M. R., Watson L. 1981; Variations in kinetic properties of RuBisCO among plants. Plant Physiol 67:1151–1155 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/006262-0
Loading
/content/journal/micro/10.1099/mic.0.2007/006262-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error