1887

Abstract

Many species of bacteria can adhere to surfaces and grow as sessile communities. The continued accumulation of bacteria can eventually lead to the extremely high-cell-density environment characteristic of many biofilms or cell colonies. This is the normal habitat of the cariogenic species which normally resides in the high-cell-density, multispecies community commonly referred to as dental plaque. Previous work has demonstrated that the transcription of two separate bacteriocins can be activated by the high-cell-density conditions created through the centrifugation and incubation of cell pellets. In this study, we identified an uncharacterized two-gene operon that was induced >10-fold by conditions of high cell density. The genes of the operon encode a putative transcription regulator and a membrane protein, which were renamed as and , respectively. A transcription fusion to the operon confirmed its induction by high cell density. Mutation of abolished bacteriocin production, greatly increased natural competence, reduced the growth rate, and severely affected biofilm formation. Interestingly, no obvious phenotypes were observed from a non-polar mutation of or mutations affecting the entire operon. These data suggest that the operon may constitute a novel regulatory system responsible for mediating a cellular response to a high-cell-density environment.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/007468-0
2007-08-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/8/2765.html?itemId=/content/journal/micro/10.1099/mic.0.2007/007468-0&mimeType=html&fmt=ahah

References

  1. Abranches J., Candella M. M., Wen Z. T., Baker H. V., Burne R. A. 2006; Different roles of EIIABMan and EIIGlc in regulation of energy metabolism, biofilm development, and competence in Streptococcus mutans . J Bacteriol 188:3748–3756
    [Google Scholar]
  2. Achen M. G., Davidson B. E., Hillier A. J. 1986; Construction of plasmid vectors for the detection of streptococcal promoters. Gene 45:45–49
    [Google Scholar]
  3. Ahn S. J., Burne R. A. 2006; The atlA operon of Streptococcus mutans : role in autolysin maturation and cell surface biogenesis. J Bacteriol 188:6877–6888
    [Google Scholar]
  4. Ahn S. J., Lemos J. A., Burne R. A. 2005; Role of HtrA in growth and competence of Streptococcus mutans UA159. J Bacteriol 187:3028–3038
    [Google Scholar]
  5. Ahn S. J., Wen Z. T., Burne R. A. 2006; Multilevel control of competence development and stress tolerance in Streptococcus mutans UA159. Infect Immun 74:1631–1642
    [Google Scholar]
  6. Caufield P. W., Shah G. R., Hollingshead S. K. 1990; Use of transposon Tn 916 to inactivate and isolate a mutacin-associated gene from Streptococcus mutans . Infect Immun 58:4126–4135
    [Google Scholar]
  7. Evaldson G., Heimdahl A., Kager L., Nord C. E. 1982; The normal human anaerobic microflora. Scand J Infect Dis Suppl 35:9–15
    [Google Scholar]
  8. Hahn J., Bylund J., Haines M., Higgins M., Dubnau D. 1995; Inactivation of mecA prevents recovery from the competent state and interferes with cell division and the partitioning of nucleoids in Bacillus subtilis . Mol Microbiol 18:755–767
    [Google Scholar]
  9. Haijema B. J., Hahn J., Haynes J., Dubnau D. 2001; A ComGA-dependent checkpoint limits growth during the escape from competence. Mol Microbiol 40:52–64
    [Google Scholar]
  10. Hussain H., Branny P., Allan E. 2006; A eukaryotic-type serine/threonine protein kinase is required for biofilm formation, genetic competence, and acid resistance in Streptococcus mutans . J Bacteriol 188:1628–1632
    [Google Scholar]
  11. Kreth J., Hagerman E., Tam K., Merritt J., Wong D. T., Wu B. M., Myung N. V., Shi W., Qi F. 2004; Quantitative analyses of Streptococcus mutans biofilms with quartz crystal microbalance, microjet impingement and confocal microscopy. Biofilms 1:277–284
    [Google Scholar]
  12. Kreth J., Merritt J., Shi W., Qi F. 2005; Co-ordinated bacteriocin production and competence development: a possible mechanism for taking up DNA from neighbouring species. Mol Microbiol 57:392–404
    [Google Scholar]
  13. Li Y. H., Lau P. C., Lee J. H., Ellen R. P., Cvitkovitch D. G. 2001; Natural genetic transformation of Streptococcus mutans growing in biofilms. J Bacteriol 183:897–908
    [Google Scholar]
  14. Martin B., Quentin Y., Fichant G., Claverys J. P. 2006; Independent evolution of competence regulatory cascades in streptococci?. Trends Microbiol 14:339–345
    [Google Scholar]
  15. Merritt J., Kreth J., Qi F., Sullivan R., Shi W. 2005a; Non-disruptive, real-time analyses of the metabolic status and viability of Streptococcus mutans cells in response to antimicrobial treatments. J Microbiol Methods 61:161–170
    [Google Scholar]
  16. Merritt J., Kreth J., Shi W., Qi F. 2005b; LuxS controls bacteriocin production in Streptococcus mutans through a novel regulatory component. Mol Microbiol 57:960–969
    [Google Scholar]
  17. Merritt J., Qi F., Shi W. 2005c; A unique nine-gene comY operon in Streptococcus mutans . Microbiology 151:157–166
    [Google Scholar]
  18. Merritt J., Tsang P., Zheng L., Shi W., Qi F. 2007; Construction of a counterselection-based in-frame deletion system for genetic studies of Streptococcus mutans . Oral Microbiol Immunol 22:95–102
    [Google Scholar]
  19. Perry D., Wondrack L. M., Kuramitsu H. K. 1983; Genetic transformation of putative cariogenic properties in Streptococcus mutans . Infect Immun 41:722–727
    [Google Scholar]
  20. Podbielski A., Spellerberg B., Woischnik M., Pohl B., Lutticken R. 1996; Novel series of plasmid vectors for gene inactivation and expression analysis in group A streptococci (GAS. Gene 177:137–147
    [Google Scholar]
  21. Podbielski A., Woischnik M., Leonard B. A., Schmidt K. H. 1999; Characterization of nra , a global negative regulator gene in group A streptococci. Mol Microbiol 31:1051–1064
    [Google Scholar]
  22. Qi F., Chen P., Caufield P. W. 2000; Purification and biochemical characterization of mutacin I from the group I strain of Streptococcus mutans , CH43, and genetic analysis of mutacin I biosynthesis genes. Appl Environ Microbiol 66:3221–3229
    [Google Scholar]
  23. Qi F., Merritt J., Lux R., Shi W. 2004; Inactivation of the ciaH gene in Streptococcus mutans diminishes mutacin production and competence development, alters sucrose-dependent biofilm formation, and reduces stress tolerance. Infect Immun 72:4895–4899
    [Google Scholar]
  24. Rolerson E., Swick A., Newlon L., Palmer C., Pan Y., Keeshan B., Spatafora G. 2006; The SloR/Dlg metalloregulator modulates Streptococcus mutans virulence gene expression. J Bacteriol 188:5033–5044
    [Google Scholar]
  25. Senadheera M. D., Guggenheim B., Spatafora G. A., Huang Y. C., Choi JHung D. C., Treglown J. S., Goodman S. D., Ellen R. P., Cvitkovitch D. G. other authors 2005; A VicRK signal transduction system in Streptococcus mutans affects gtfBCD , gbpB , and ftf expression, biofilm formation, and genetic competence development. J Bacteriol 187:4064–4076
    [Google Scholar]
  26. Senadheera M. D., Lee A. W., Hung D. C., Spatafora G. A., Goodman S. D., Cvitkovitch D. G. 2007; The Streptococcus mutans vicX gene product modulates gtfB/C expression, biofilm formation, genetic competence and oxidative stress tolerance. J Bacteriol 189:1451–1458
    [Google Scholar]
  27. Shah G. R., Caufield P. W. 1993; Enhanced transformation of Streptococcus mutans by modifications in culture conditions. Anal Biochem 214:343–346
    [Google Scholar]
  28. Tao L., MacAlister T. J., Tanzer J. M. 1993; Transformation efficiency of EMS-induced mutants of Streptococcus mutans of altered cell shape. J Dent Res 72:1032–1039
    [Google Scholar]
  29. Wang B., Kuramitsu H. K. 2006; A pleiotropic regulator, Frp, affects exopolysaccharide synthesis, biofilm formation, and competence development in Streptococcus mutans . Infect Immun 74:4581–4589
    [Google Scholar]
  30. Wen Z. T., Suntharaligham P., Cvitkovitch D. G., Burne R. A. 2005; Trigger factor in Streptococcus mutans is involved in stress tolerance, competence development, and biofilm formation. Infect Immun 73:219–225
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/007468-0
Loading
/content/journal/micro/10.1099/mic.0.2007/007468-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error