1887

Abstract

Integrons are genetic elements that allow the mobilization and expression of smaller elements called gene cassettes, and are considered to be key elements in the evolution of antibiotic resistance among enteric bacteria. Although in nature integrons appear to be abundant, the presence of class 1 integrons in has been reported to be much less frequent among isolates of non-human origin than among clinical ones. Searching for integrons in a wide variety of isolates we found a steep decline in class 1 integron prevalence when going from clinical strains to environmental ones, from outdoor urban dust to the microbiota of wild animals. Attempting to assess the causes of this decline, we addressed the evolution of integron integrases, comparing the amino acid sequence of various of these enzymes, the key proteins in gene-cassette mobilization. We found that all integrases are homologues, but different classes have been recruited by enteric bacteria, supporting the notion that integrons can frequently be gained and lost. Additionally, we found that phylogenetically distant organisms that bear , such as and other enteric bacteria, but also the Gram-positive corynebacteria, have a similar preferential genomic codon usage (CU), suggesting that CU might play an important role in the acquisition and/or maintenance of integrons. In fact, the CU of is more similar to the preferential genomic CU of non-enteric bacteria than it is to that of . CU has been proposed to be involved in the retention of horizontally transferred genes; integrons in are often plasmid-borne. This might explain the reduced prevalence of integrons in enteric bacteria when not under the selective pressure of antibiotics. Collectively, our results provide evidence that class 1 integrons are important gene mobilizers within , but are not acquired and/or stably maintained without selective pressure. Thus, although not effective to reduce the prevalence of resistance itself, decreasing the use of antibiotics could be useful to diminish the presence of gene-mobilization machineries.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/008649-0
2008-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/94.html?itemId=/content/journal/micro/10.1099/mic.0.2007/008649-0&mimeType=html&fmt=ahah

References

  1. Altschul S. F., Madden T. L., Schaffer A. A., Zhang J., Zhang Z., Miller W., Lipman D. J. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402
    [Google Scholar]
  2. Amábile-Cuevas C. F., Chicurel M. E. 1992; Bacterial plasmids and gene flux. Cell 70:189–199
    [Google Scholar]
  3. Barlow R. S., Pemberton J. M., Desmarchelier P. M., Gobius K. S. 2004; Isolation and characterization of integron-containing bacteria without antibiotic selection. Antimicrob Agents Chemother 48:838–842
    [Google Scholar]
  4. Bennett P. M. 1999; Integrons and gene cassettes: a genetic construction kit for bacteria. J Antimicrob Chemother 43:1–4
    [Google Scholar]
  5. Boucher Y., Labbate M., Koenig J. E., Stokes H. W. 2007; Integrons: mobilizable platforms that promote genetic diversity in bacteria. Trends Microbiol 15:301–309
    [Google Scholar]
  6. Bouma J. E., Lenski R. E. 1988; Evolution of a bacteria/plasmid association. Nature 335:351–352
    [Google Scholar]
  7. Chenna R., Sugawara H., Koike T., Lopez R., Gibson T. J., Higgins D. G., Thompson J. D. 2003; Multiple sequence alignment with the clustal series of programs. Nucleic Acids Res 31:3497–3500
    [Google Scholar]
  8. Eddy S. R. 1998; Profile hidden Markov models. Bioinformatics 14:755–763
    [Google Scholar]
  9. Escobar-Paramo P., Le Menac'h A., Le Gall T., Amorin C., Gouriou S., Picard B., Skurnik D., Denamur E. 2006; Identification of forces shaping the commensal Escherichia coli genetic structure by comparing animal and human isolates. Environ Microbiol 8:1975–1984
    [Google Scholar]
  10. Felsenstein J. 2005 phylip (phylogeny inference package) version 3.6. Distributed by the author. Department of Genome Sciences University of Washington; Seattle, USA:
    [Google Scholar]
  11. Firth N. 2003; Evolution of antimicrobial multi-resistance in Gram-positive bacteria. In Multiple Drug Resistant Bacteria . pp 33–60 Edited by Amábile-Cuevas C. F. Wymondham, UK: Horizon Scientific Press;
  12. Frickey T., Lupas A. 2004; clans: A Java application for visualizing protein families based on pairwise similarity. Bioinformatics 20:3702–3704
    [Google Scholar]
  13. Garcia-Vallve S., Guzman E., Montero M. A., Romeu A. 2003; HGT-DB: a database of putative horizontally transferred genes in prokaryotic complete genomes. Nucleic Acids Res 31:187–189
    [Google Scholar]
  14. Goldstein C., Lee M. D., Sanchez S., Hudson C., Phillips B., Register B., Grady M., Liebert C., Summers A. O. other authors 2001; Incidence of class 1 and 2 integrases in clinical and commensal bacteria from livestock, companion animals, and exotics. Antimicrob Agents Chemother 45:723–726
    [Google Scholar]
  15. Hall R. M., Recchia G. D., Collis C. M., Brown H. J., Stokes H. W. 1996; Gene cassettes and integrons: moving antibiotic resistance genes in Gram-negative bacteria. In Antibiotic Resistance: from Molecular Basics to Therapeutic Options pp 19–34 Edited by Amábile-Cuevas C. F. New York: Chapman & Hall;
    [Google Scholar]
  16. Heinemann J. A., Ankenbauer R. G., Amábile-Cuevas C. F. 2000; Do antibiotics maintain antibiotic resistance?. Drug Discov Today 5:195–204
    [Google Scholar]
  17. Kanehisa M., Goto S. 2000; KEGG: Kyoto encyclopedia of genes and genomes. Nucleic Acids Res 28:27–30
    [Google Scholar]
  18. Leverstein-Van Hall M. A., Paauw A., Box A. T., Blok H. E., Verhoef J., Fluit A. C. 2002; Presence of integron-associated resistance in the community is widespread and contributes to multidrug resistance in the hospital. J Clin Microbiol 40:3038–3040
    [Google Scholar]
  19. Lévesque C., Roy P. H. 1993 PCR analysis of integrons. In Diagnostic Molecular Microbiology, Principles and Applications pp 590–602 Edited by Persing D. H. Smith T. F., Tenover F. C., White T. J. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  20. MacDonald D., Demarre G., Bouvier M., Mazel D., Gopaul D. N. 2006; Structural basis for broad DNA-specificity in integron recombination. Nature 440:1157–1162
    [Google Scholar]
  21. McGuffin L. J., Bryson K., Jones D. T. 2000; The psipred protein structure prediction server. Bioinformatics 16:404–405
    [Google Scholar]
  22. Medrano-Soto A., Moreno-Hagelsieb G., Vinuesa P., Christen J. A., Collado-Vides J. 2004; Successful lateral transfer requires codon usage compatibility between foreign genes and recipient genomes. Mol Biol Evol 21:1884–1894
    [Google Scholar]
  23. Messier N., Roy P. H. 2001; Integron integrases possess a unique additional domain necessary for activity. J Bacteriol 183:6699–6706
    [Google Scholar]
  24. Michael C. A., Gillings M. R., Holmes A. J., Hughes L., Andrew N. R., Holley M. P., Stokes H. W. 2004; Mobile gene cassettes: a fundamental resource for bacterial evolution. Am Nat 164:1–12
    [Google Scholar]
  25. Naas T., Mikami Y., Imai T., Poirel L., Nordmann P. 2001; Characterization of In53, a class 1 plasmid- and composite transposon-located integron of Escherichia coli which carries an unusual array of gene cassettes. J Bacteriol 183:235–249
    [Google Scholar]
  26. Nandi S., Maurer J. J., Hofacre C., Summers A. O. 2004; Gram-positive bacteria are a major reservoir of class 1 antibiotic resistance integrons in poultry litter. Proc Natl Acad Sci U S A 101:7118–7122
    [Google Scholar]
  27. Nemergut D. R., Martin A. P., Schmidt S. K. 2004; Integron diversity in heavy-metal-contaminated mine tailings and inferences about integron evolution. Appl Environ Microbiol 70:1160–1168
    [Google Scholar]
  28. Nield B. S., Holmes A. J., Gillings M. R., Recchia G. D., Mabbutt B. C., Nevalainen K. M., Stokes H. W. 2001; Recovery of new integron classes from environmental DNA. FEMS Microbiol Lett 195:59–65
    [Google Scholar]
  29. Notredame C., Higgins D. G., Heringa J. 2000; t-coffee: A novel method for fast and accurate multiple sequence alignment. J Mol Biol 302:205–217
    [Google Scholar]
  30. Ochman H., Lawrence J. G., Groisman E. A. 2000; Lateral gene transfer and the nature of bacterial innovation. Nature 405:299–304
    [Google Scholar]
  31. Partridge S. R., Brown H. J., Stokes H. W., Hall R. M. 2001; Transposons Tn 1696 and Tn 21 and their integrons In4 and In2 have independent origins. Antimicrob Agents Chemother 45:1263–1270
    [Google Scholar]
  32. Rice P., Longden I., Bleasby A. 2000; emboss: The European Molecular Biology Open Software Suite. Trends Genet 16:276–277
    [Google Scholar]
  33. Roe M. T., Vega E., Pillai S. D. 2003; Antimicrobial resistance markers of class 1 and class 2 integron-bearing Escherichia coli from irrigation water and sediments. Emerg Infect Dis 9:822–826
    [Google Scholar]
  34. Rosas I., Salinas E., Martinez L., Calva E., Cravioto A., Eslava C., Amábile-Cuevas C. F. 2006; Urban dust fecal pollution in Mexico City: antibiotic resistance and virulence factors of Escherichia coli . Int J Hyg Environ Health 209:461–470
    [Google Scholar]
  35. Rowe-Magnus D. A., Guerout A. M., Ploncard P., Dychinco B., Davies J., Mazel D. 2001; The evolutionary history of chromosomal super-integrons provides an ancestry for multiresistant integrons. Proc Natl Acad Sci U S A 98:652–657
    [Google Scholar]
  36. Salyers A. A., Amábile-Cuevas C. F. 1997; Why are antibiotic resistance genes so resistant to elimination?. Antimicrob Agents Chemother 41:2321–2325
    [Google Scholar]
  37. Skurnik D., Le Menac'h A., Zurakowski D., Mazel D., Courvalin P., Denamur E., Andremont A., Ruimy R. 2005; Integron-associated antibiotic resistance and phylogenetic grouping of Escherichia coli isolates from healthy subjects free of recent antibiotic exposure. Antimicrob Agents Chemother 49:3062–3065
    [Google Scholar]
  38. Souza V., Rocha M., Valera A., Eguiarte L. E. 1999; Genetic structure of natural populations of Escherichia coli in wild hosts on different continents. Appl Environ Microbiol 65:3373–3385
    [Google Scholar]
  39. Sunde M. 2005; Class I integron with a group II intron detected in an Escherichia coli strain from a free-range reindeer. Antimicrob Agents Chemother 49:2512–2514
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/008649-0
Loading
/content/journal/micro/10.1099/mic.0.2007/008649-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error