1887

Abstract

Type IV pili are retractable protein fibres used by many bacterial pathogens for adherence, twitching motility, biofilm development and host colonization. In , PilB and PilT are bipolar proteins belonging to the secretion NTPase superfamily, and power pilus extension and retraction, respectively, while the unipolar PilT paralogue PilU supports pilus retraction in an unknown manner. Assay of purified 6×His-tagged PilB, PilT and PilU from showed that all three proteins have ATPase activities . Conserved residues in the Walker A (WA), Walker B (WB), Asp Box and His Box motifs characteristic of secretion NTPases were mutated, and complementation of twitching motility was tested. Mutation of conserved WA or WB residues in any of the three ATPases abrogated twitching motility, and for the WA mutant of PilT caused loss of polar localization. The requirement for three invariant acidic residues in the Asp Box motif, and for two invariant His residues in the His Box motif varied, with PilB being the least tolerant of changes. In all three proteins, the third acidic residue in the Asp Box and the second His of the His Box were crucial for function; mutation of these residues caused loss of PilT ATPase activity . Modelling of the effects of these mutations on the crystal structures of PilT and EpsE (a PilB homologue) showed that the critical Asp Box and His Box residues contribute to a catalytic pocket that surrounds the ligand. These results provide experimental evidence differentiating widely conserved Asp and His Box residues that are essential for function from those whose roles are modulated by specific local environments.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/011320-0
2008-01-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/1/114.html?itemId=/content/journal/micro/10.1099/mic.0.2007/011320-0&mimeType=html&fmt=ahah

References

  1. Aukema K. G., Kron E. M., Herdendorf T. J., Forest K. T. 2005; Functional dissection of a conserved motif within the pilus retraction protein PilT. J Bacteriol 187:611–618
    [Google Scholar]
  2. Bhattacharjee M. K., Kachlany S. C., Fine D. H., Figurski D. H. 2001; Nonspecific adherence and fibril biogenesis by Actinobacillus actinomycetemcomitans : TadA protein is an ATPase. J Bacteriol 183:5927–5936
    [Google Scholar]
  3. Bradley D. E. 1974; The adsorption of Pseudomonas aeruginosa pilus-dependent bacteriophages to a host mutant with nonretractile pili. Virology 58:149–163
    [Google Scholar]
  4. Burrows L. L. 2005; Weapons of mass retraction. Mol Microbiol 57:878–888
    [Google Scholar]
  5. Camberg J. L., Sandkvist M. 2005; Molecular analysis of the Vibrio cholerae type II secretion ATPase EpsE. J Bacteriol 187:249–256
    [Google Scholar]
  6. Castric P. 1995; pilO , a gene required for glycosylation of Pseudomonas aeruginosa 1244 pilin. Microbiology 141:1247–1254
    [Google Scholar]
  7. Chiang P., Burrows L. L. 2003; Biofilm formation by hyperpiliated mutants of Pseudomonas aeruginosa . J Bacteriol 185:2374–2378
    [Google Scholar]
  8. Chiang P., Habash M., Burrows L. L. 2005; Disparate subcellular localization patterns of Pseudomonas aeruginosa type IV pilus ATPases involved in twitching motility. J Bacteriol 187:829–839
    [Google Scholar]
  9. Craig L., Pique M. E., Tainer J. A. 2004; Type IV pilus structure and bacterial pathogenicity. Nat Rev Microbiol 2:363–378
    [Google Scholar]
  10. Craig L., Volkmann N., Arvai A. S., Pique M. E., Yeager M., Egelman E. H., Tainer J. A. 2006; Type IV pilus structure by cryo-electron microscopy and crystallography: implications for pilus assembly and functions. Mol Cell 23:651–662
    [Google Scholar]
  11. Crowther L. J., Yamagata A., Craig L., Tainer J. A., Donnenberg M. S. 2005; The ATPase activity of BfpD is greatly enhanced by zinc and allosteric interactions with other Bfp proteins. J Biol Chem 280:24839–24848
    [Google Scholar]
  12. Forsberg A., Guina T. 2007; Type II secretion and type IV pili of Francisella . Ann N Y Acad Sci 1105187–201
    [Google Scholar]
  13. Hager A. J., Bolton D. L., Pelletier M. R., Brittnacher M. J., Gallagher L. A., Kaul R., Skerrett S. J., Miller S. I., Guina T. 2006; Type IV pili-mediated secretion modulates Francisella virulence. Mol Microbiol 62:227–237
    [Google Scholar]
  14. Han X., Kennan R. M., Parker D., Davies J. K., Rood J. I. 2007; Type IV fimbrial biogenesis is required for protease secretion and natural transformation in Dichelobacter nodosus . J Bacteriol 189:5022–5033
    [Google Scholar]
  15. Herdendorf T. J., McCaslin D. R., Forest K. T. 2002; Aquifex aeolicus PilT, homologue of a surface motility protein, is a thermostable oligomeric NTPase. J Bacteriol 184:6465–6471
    [Google Scholar]
  16. Hobbs M., Mattick J. S. 1993; Common components in the assembly of type 4 fimbriae, DNA transfer systems, filamentous phage and protein-secretion apparatus: a general system for the formation of surface-associated protein complexes. Mol Microbiol 10:233–243
    [Google Scholar]
  17. Iyer L. M., Leipe D. D., Koonin E. V., Aravind L. 2004; Evolutionary history and higher order classification of AAA+ ATPases. J Struct Biol 146:11–31
    [Google Scholar]
  18. Kennan R. M., Dhungyel O. P., Whittington R. J., Egerton J. R., Rood J. I. 2001; The type IV fimbrial subunit gene ( fimA ) of Dichelobacter nodosus is essential for virulence, protease secretion, and natural competence. J Bacteriol 183:4451–4458
    [Google Scholar]
  19. Kirn T. J., Taylor R. K. 2005; TcpF is a soluble colonization factor and protective antigen secreted by El Tor and classical O1 and O139 Vibrio cholerae serogroups. Infect Immun 73:4461–4470
    [Google Scholar]
  20. Kirn T. J., Bose N., Taylor R. K. 2003; Secretion of a soluble colonization factor by the TCP type 4 pilus biogenesis pathway in Vibrio cholerae . Mol Microbiol 49:81–92
    [Google Scholar]
  21. Koga T., Ishimoto K., Lory S. 1993; Genetic and functional characterization of the gene cluster specifying expression of Pseudomonas aeruginosa pili. Infect Immun 61:1371–1377
    [Google Scholar]
  22. Krause S., Barcena M., Pansegrau W., Lurz R., Carazo J. M., Lanka E. 2000; Sequence-related protein export NTPases encoded by the conjugative transfer region of RP4 and by the cag pathogenicity island of Helicobacter pylori share similar hexameric ring structures. Proc Natl Acad Sci U S A 97:3067–3072
    [Google Scholar]
  23. Maier B., Potter L., So M., Seifert H. S., Sheetz M. P. 2002; Single pilus motor forces exceed 100 pN. Proc Natl Acad Sci U S A 99:16012–16017
    [Google Scholar]
  24. Mattick J. S. 2002; Type IV pili and twitching motility. Annu Rev Microbiol 56:289–314
    [Google Scholar]
  25. Planet P. J., Kachlany S. C., DeSalle R., Figurski D. H. 2001; Phylogeny of genes for secretion NTPases: identification of the widespread tadA subfamily and development of a diagnostic key for gene classification. Proc Natl Acad Sci U S A 98:2503–2508
    [Google Scholar]
  26. Possot O., d'Enfert C., Reyss I., Pugsley A. P. 1992; Pullulanase secretion in Escherichia coli K-12 requires a cytoplasmic protein and a putative polytopic cytoplasmic membrane protein. Mol Microbiol 6:95–105
    [Google Scholar]
  27. Ramboarina S., Fernandes P. J., Daniell S., Islam S., Simpson P., Frankel G., Booy F., Donnenberg M. S., Matthews S. 2005; Structure of the bundle-forming pilus from enteropathogenic Escherichia coli . J Biol Chem 280:40252–40260
    [Google Scholar]
  28. Rivas S., Bolland S., Cabezon E., Goni F. M., de la Cruz F. 1997; TrwD, a protein encoded by the IncW plasmid R388, displays an ATP hydrolase activity essential for bacterial conjugation. J Biol Chem 272:25583–25590
    [Google Scholar]
  29. Robien M. A., Krumm B. E., Sandkvist M., Hol W. G. 2003; Crystal structure of the extracellular protein secretion NTPase EpsE of Vibrio cholerae . J Mol Biol 333:657–674
    [Google Scholar]
  30. Sakai D., Horiuchi T., Komano T. 2001; ATPase activity and multimer formation of PilQ protein are required for thin pilus biogenesis in plasmid R64. J Biol Chem 276:17968–17975
    [Google Scholar]
  31. Satyshur K. A., Worzalla G. A., Meyer L. S., Heiniger E. K., Aukema K. G., Misic A. M., Forest K. T. 2007; Crystal structures of the pilus retraction motor PilT suggest large domain movements and subunit cooperation drive motility. Structure 15:363–376
    [Google Scholar]
  32. Savvides S. N., Yeo H. J., Beck M. R., Blaesing F., Lurz R., Lanka E., Buhrdorf R., Fischer W., Haas R., Waksman G. 2003; VirB11 ATPases are dynamic hexameric assemblies: new insights into bacterial type IV secretion. EMBO J 22:1969–1980
    [Google Scholar]
  33. Semmler A. B., Whitchurch C. B., Mattick J. S. 1999; A re-examination of twitching motility in Pseudomonas aeruginosa . Microbiology 145:2863–2873
    [Google Scholar]
  34. Sexton J. A., Pinkner J. S., Roth R., Heuser J. E., Hultgren S. J., Vogel J. P. 2004; The Legionella pneumophila PilT homologue DotB exhibits ATPase activity that is critical for intracellular growth. J Bacteriol 186:1658–1666
    [Google Scholar]
  35. Shiue S. J., Kao K. M., Leu W. M., Chen L. Y., Chan N. L., Hu N. T. 2006; XpsE oligomerization triggered by ATP binding, not hydrolysis, leads to its association with XpsL. EMBO J 25:1426–1435
    [Google Scholar]
  36. Skerker J. M., Berg H. C. 2001; Direct observation of extension and retraction of type IV pili. Proc Natl Acad Sci U S A 98:6901–6904
    [Google Scholar]
  37. Stephens K. M., Roush C., Nester E. 1995; Agrobacterium tumefaciens VirB11 protein requires a consensus nucleotide-binding site for function in virulence. J Bacteriol 177:27–36
    [Google Scholar]
  38. Story R. M., Steitz T. A. 1992; Structure of the RecA protein–ADP complex. Nature 355:374–376
    [Google Scholar]
  39. Turner L. R., Lara J. C., Nunn D. N., Lory S. 1993; Mutations in the consensus ATP673 binding sites of XcpR and PilB eliminate extracellular protein secretion and pilus biogenesis in Pseudomonas aeruginosa . J Bacteriol 175:4962–4969
    [Google Scholar]
  40. Walker J. E., Saraste M., Runswick M. J., Gay N. J. 1982; Distantly related sequences in the α - and β -subunits of ATP synthase, myosin, kinases and other ATP-requiring enzymes and a common nucleotide binding fold. EMBO J 1:945–951
    [Google Scholar]
  41. Whitchurch C. B., Mattick J. S. 1994; Characterization of a gene, pilU , required for twitching motility but not phage sensitivity in Pseudomonas aeruginosa . Mol Microbiol 13:1079–1091
    [Google Scholar]
  42. Whitchurch C. B., Hobbs M., Livingston S. P., Krishnapillai V., Mattick J. S. 1991; Characterisation of a Pseudomonas aeruginosa twitching motility gene and evidence for a specialised protein export system widespread in eubacteria. Gene 101:33–44
    [Google Scholar]
  43. Yeo H. J., Savvides S. N., Herr A. B., Lanka E., Waksman G. 2000; Crystal structure of the hexameric traffic ATPase of the Helicobacter pylori type IV secretion system. Mol Cell 6:1461–1472
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/011320-0
Loading
/content/journal/micro/10.1099/mic.0.2007/011320-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error