1887

Abstract

Although unicellular, bacteria are highly interactive and employ a range of cell-to-cell communication or ‘quorum sensing (QS)’ systems for promoting collective behaviour within a population. QS is generally considered to facilitate gene expression only when the population has reached a sufficient cell density and depends on the synthesis of small molecules that diffuse in and out of bacterial cells. As the bacterial population density increases, so does the synthesis of QS signal molecules and consequently, their concentration in the external environment increases. Once a critical threshold concentration is reached, a target sensor kinase or response regulator is activated, so facilitating the expression of QS-dependent target genes. Several chemically distinct families of QS signal molecules have been described, of which the -acylhomoserine lactone (AHL) family in Gram-negative bacteria have been the most intensively investigated. QS contributes to environmental adaptation by facilitating the elaboration of virulence determinants in pathogenic species and plant biocontrol characteristics in beneficial species as well as directing biofilm formation and colony escape. QS also crosses the prokaryotic–eukaryotic boundary in that QS signal molecules influence the behaviour of eukaryotic organisms in both the plant and mammalian worlds such that QS signal molecules may directly facilitate bacterial survival by promoting an advantageous lifestyle within a given environmental niche.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/012856-0
2007-12-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/153/12/3923.html?itemId=/content/journal/micro/10.1099/mic.0.2007/012856-0&mimeType=html&fmt=ahah

References

  1. Ahmer B. M. M. 2004; Cell-to-cell signalling in Escherichia coli and Salmonella enterica . Mol Microbiol 52:933–945
    [Google Scholar]
  2. Andersen J. B., Heydorn A., Hentzer M., Eberl L., Geisenberger O., Christensen B. B., Molin S., Givskov M. 2001; gfp -based N -acyl homoserine-lactone sensor systems for detection of bacterial communication. Appl Environ Microbiol 67:575–585
    [Google Scholar]
  3. Auchtung J. M., Lee C. A., Grossman A. D. 2006; Modulation of the ComA-dependent quorum response in Bacillus subtilis by multiple Rap proteins and Phr peptides. J Bacteriol 188:5273–5285
    [Google Scholar]
  4. Bainton N. J., Bycroft B. W., Chhabra S. R., Stead P., Gledhill L., Hill P. J., Rees C. E. D., Winson M. K., Salmond G. P. C. other authors 1992a; A general role for the lux autoinducer in bacterial cell signalling: control of antibiotic synthesis in Erwinia . Gene 116:87–91
    [Google Scholar]
  5. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1992b; N -(3-Oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora . Biochem J 288:997–1004
    [Google Scholar]
  6. Barnard A. M. L., Bowden S. D., Burr T., Coulthurst S. J., Monson R. E., Salmond G. P. C. 2007; Quorum sensing, virulence and secondary metabolite production in plant soft-rotting bacteria. Philos Trans R Soc Lond B Biol Sci 362:1165–1183
    [Google Scholar]
  7. Bauer W. D., Mathesius U. 2004; Plant responses to bacterial quorum sensing signals. Curr Opin Plant Biol 7:429–433
    [Google Scholar]
  8. Bjarnsholt T., Givskov M. 2007; Quorum-sensing blockade as a strategy for enhancing host defences against bacterial pathogens. Philos Trans R Soc Lond B Biol Sci 362:1213–1222
    [Google Scholar]
  9. Bottomley M. J., Muraglia E., Bazzo R., Carfi A. 2007; Molecular insights into quorum sensing in the human pathogen Pseudomonas aeruginosa from the structure of the virulence regulator LasR bound to its autoinducer. J Biol Chem 282:13592–13600
    [Google Scholar]
  10. Brader G., Sjoblom S., Hyytiainen H., Sims-Huopaniemi K., Palva E. T. 2005; Altering substrate chain length specificity of an acylhomoserine lactone synthase in bacterial communication. J Biol Chem 280:10403–10409
    [Google Scholar]
  11. Burr T., Barnard A. M. L., Corbett M. J., Pemberton C. L., Simpson N. J. L., Salmond G. P. C. 2006; Identification of the central quorum sensing regulator of virulence in the enteric phytopathogen, Erwinia carotovora : the VirR repressor. Mol Microbiol 59:113–125
    [Google Scholar]
  12. Cao J. G., Meighen E. A. 1989; Purification and structural identification of an autoinducer for the luminescence system of Vibrio harveyi . J Biol Chem 264:21670–21676
    [Google Scholar]
  13. Chan W. C., Coyle B. J., Williams P. 2004; Virulence regulation and quorum sensing in staphylococcal infections: competitive AgrC antagonists as quorum sensing inhibitors. J Med Chem 47:4633–4641
    [Google Scholar]
  14. Chhabra S. R., Stead P., Bainton N. J., Salmond G. P., Stewart G. S. A. B., Williams P., Bycroft B. W. 1993; Autoregulation of carbapenem biosynthesis in Erwinia carotovora by analogues of N -(3-oxohexanoyl)-l-homoserine lactone. J Antibiot (Tokyo 46:441–454
    [Google Scholar]
  15. Chhabra S. R., Hart C., Hooi D. S. W., Daykin M., Williams P., Telford G., Pritchard D. I., Bycroft B. W. 2003; Synthetic analogues of the bacterial signal (quorum sensing) molecule N -(3-oxododecanoyl)-l-homoserine lactone as immune modulators. J Med Chem 46:97–104
    [Google Scholar]
  16. Chhabra S. R., Philipp B., Eberl L., Givskov M., Williams P., Cámara M. 2005; Extracellular communication in bacteria. In Chemistry of Pheromones and Other Semiochemicals 2 pp 279–315 Edited by Schulz S. Berlin/Heidelberg: Springer;
    [Google Scholar]
  17. Cullinane M., Baysse C., Morrissey J. P., O'Gara F. 2005; Identification of two lysophosphatidic acid acyltransferase genes with overlapping function in Pseudomonas fluorescens . Microbiology 151:3071–3080
    [Google Scholar]
  18. Delalande L., Faure F., Raffoux A., Uroz S., D'Angelo-Picard C., Elasri M., Carlier A., Berruyer R., Petit A. other authors 2005; N -Hexanoyl-l-homoserine lactone, a mediator of bacterial quorum-sensing regulation, exhibits plant-dependent stability and may be inactivated by germinating Lotus corniculatus seedlings. FEMS Microbiol Ecol 52:13–20
    [Google Scholar]
  19. Diggle S. P., Gardner A., West S. A., Griffin A. S. 2007; Evolutionary theory of bacterial quorum sensing: when is a signal not a signal?. Philos Trans R Soc Lond B Biol Sci 362:1241–1249
    [Google Scholar]
  20. Dong Y. H., Wang L. H., Zhang L. H. 2007; Quorum-quenching microbial infections: mechanisms and implications. Philos Trans R Soc Lond B Biol Sci 362:1201–1211
    [Google Scholar]
  21. Duan K., Dammel C., Stein J., Rabin H., Surette M. 2003; Modulation of Pseudomonas aeruginosa gene expression by host microflora through interspecies communication. Mol Microbiol 50:1477–1491
    [Google Scholar]
  22. Dudler R., Eberl E. 2006; Interactions between bacteria and eukaryotes via small molecules. Curr Opin Biotechnol 17:268–273
    [Google Scholar]
  23. Dufour P., Jarraud S., Vandenesch F., Greenland T., Novick R. P., Bes M., Etienne J., Lina G. 2002; High genetic variability of the agr locus in Staphylococcus species. J Bacteriol 184:1180–1186
    [Google Scholar]
  24. Eberhard A., Burlingame A. L., Kenyon G. L., Nealson K. H., Oppenheimer N. J. 1981; Structural identification of autoinducer of Photobacterium fischeri luciferase. Biochemistry 20:2444–2449
    [Google Scholar]
  25. Eberl L., Winson M. K., Sternberg C., Stewart G. S. A. B., Christiansen G., Chhabra S. R., Bycroft B., Williams P., Molin S., Giskov M. 1996; Involvement of N -acyl-l-homoserine lactone autoinducers in controlling the multicellular behaviour of Serratia liquefaciens . Mol Microbiol 20:127–136
    [Google Scholar]
  26. Fray R., Throup J. P., Daykin M., Wallace A., Williams P., Stewart G. S. A. B., Grierson D. 1999; Plants genetically modified to produce N -acylhomoserine lactones communicate with bacteria. Nat Biotechnol 17:1017–1020
    [Google Scholar]
  27. Fujiya M., Musch M. W., Nakagawa Y., Hu S., Alverdy J., Kohgo Y., Scheneewind O., Jabri B., Chang E. B. 2007; The Bacillus subtilis quorum-sensing molecule CSF contributes to intestinal homeostasis via OCTN2, a host cell membrane transporter. Cell Host & Microbe 1:299–308
    [Google Scholar]
  28. Gardiner S. M., Gardiner S., Chhabra S. R., Harty C., Pritchard D. I., Bycroft B. W., Williams P., Bennett T. 2001; Haemodynamic properties of bacterial quorum sensing signal molecules. Br J Pharmacol 133:1047–1054
    [Google Scholar]
  29. Gould T. A., Schweizer H. P., Churchill M. E. A. 2004; Structure of the Pseudomonas aeruginosa acylhomoserine lactone synthase LasI. Mol Microbiol 53:1135–1146
    [Google Scholar]
  30. Hanzelka B. L., Parsek M. R., Val D. L., Dunlap P. V., Cronan J. E., Greenberg E. P. 1999; Acylhomoserine lactone synthase activity of the Vibrio fischeri AinS protein. J Bacteriol 181:5766–5770
    [Google Scholar]
  31. Hense B. A., Kuttler C., Muller J., Rothballer M., Hartmann A. H., Kreft J.-U. 2007; Does efficiency sensing unify diffusion and quorum sensing?. Nat Rev Microbiol 5:230–239
    [Google Scholar]
  32. Hogan D. A., Vik A., Kolter R. 2004; A Pseudomonas aeruginosa quorum sensing molecule influences Candida albicans morphology. Mol Microbiol 54:1212–1223
    [Google Scholar]
  33. Holden M. T. G., McGowan S. J., Bycroft B. W., Stewart G. S. A. B., Williams P., Salmond G. P. C. 1998; Cryptic carbapenem antibiotic production genes are widespread in Erwinia carotovora : facile trans activation by the carR transcriptional regulator. Microbiology 144:1495–1508
    [Google Scholar]
  34. Hooi D. S. W., Bycroft B. W., Chhabra S. R., Williams P., Pritchard D. I. 2004; Differential immune modulatory activity of Pseudomonas aeruginosa quorum sensing signal molecules. Infect Immun 72:6463–6470
    [Google Scholar]
  35. Jiang Y., Cámara M., Chhabra S. R., Hardie K. R., Bycroft B. W., Lazdunski A., Salmond G. P. C., Stewart G., Williams P. 1998; In vitro biosynthesis of the Pseudomonas aeruginosa quorum-sensing signal molecule N -butanoyl-l-homoserine lactone. Mol Microbiol 28:193–203
    [Google Scholar]
  36. Joint I., Callow M. E., Callow J. A., Clarke K. R. 2000; The attachment of Enteromorpha zoospores to a bacterial biofilm assemblage. Biofouling 16:151–158
    [Google Scholar]
  37. Joint I., Tait K., Callow M. E., Callow J. A., Milton D., Williams P., Camara M. 2002; Cell-to-cell communication across the prokaryote/eukaryote boundary. Science 298:1207
    [Google Scholar]
  38. Joint I., Tait K., Wheeler G. 2007; Cross-kingdom signalling: exploitation of bacterial quorum sensing signal molecules by the green seaweed Ulva . Philos Trans R Soc Lond B Biol Sci 362:1223–1233
    [Google Scholar]
  39. Jones S., Yu B., Bainton N. J., Birdsall M., Bycroft B. W., Chhabra S. R., Cox A. J., Golby P., Reeves P. J. other authors 1993; The lux autoinducer regulates the production of exoenzyme virulence determinants in Erwinia carotovora and Pseudomonas aeruginosa . EMBO J 12:2477–2482
    [Google Scholar]
  40. Kaufmann G. F., Sartorio R., Lee S.-H., Rogers C. J., Meijler M. M., Moss J. A., Clapham B., Brogan A. P., Dickerson T. J., Janda K. D. 2005; Revisiting quorum sensing: discovery of additional chemical and biological functions for 3-oxo- N -acylhomoserine lactones. Proc Natl Acad Sci U S A 102:309–314
    [Google Scholar]
  41. Kravchenko V. V., Kaufmann G., Mathison J. C., Scott D. A., Katz A. Z., Wood M. R., Brogan A. P., Lehmann M., Mee J. M. other authors 2006; N -(3-Oxo-acyl)homoserine lactones signal cell activation through a mechanism distinct from the canonical pathogen-associated molecular recognition receptor pathways. J Biol Chem 281:28822–28830
    [Google Scholar]
  42. Laue B. E., Jiang Y., Chhabra S. R., Jacob S., Stewart G. S., Hardman A., Downie J. A., O'Gara F., Williams P. 2000; The biocontrol strain Pseudomonas fluorescens F113 produces the Rhizobium small bacteriocin, N -(3-hydroxy-7- cis -tetradecenoyl)homoserine lactone, via HdtS, a putative novel N -acylhomoserine lactone synthase. Microbiology 146:2469–2480
    [Google Scholar]
  43. Lawrence R. N., Dunn W. R., Bycroft B. W., Cámara M., Chhabra S. R., Williams P., Wilson V. G. 1999; The Pseudomonas aeruginosa quorum sensing signal molecule, N -(3-oxododecanoyl)-l-homoserine lactone, inhibits porcine arterial smooth muscle contraction. Br J Pharmacol 128:845–848
    [Google Scholar]
  44. Lazazzera B. A. 2001; The intracellular function of extracellular signaling peptides. Peptides 22:1519–1527
    [Google Scholar]
  45. Matsuo Y., Suzuki M., Kasai H., Shizuri Y., Harayama S. 2003; Isolation and phylogenetic characterization of bacteria capable of inducing differentiation in the green alga Monostroma oxyspermum . Environ Microbiol 5:25–35
    [Google Scholar]
  46. McClean K. H., Winson M. K., Fish A., Taylor A., Chhabra S. R., Cámara M., Daykin M., Swift S., Lamb J. other authors 1997; Quorum sensing in Chromobacterium violaceum : exploitation of violacein production and inhibition for the detection of N -acylhomoserine lactones. Microbiology 143:3703–3711
    [Google Scholar]
  47. McDowell P., Affas Z., Reynolds C., Holden M. T. G., Wood S. J., Saint S., Cockayne A., Hill P. J., Dodd C. E. R. other authors 2001; Structure, activity and evolution of the group I thiolactone peptide quorum-sensing system of Staphylococcus aureus . Mol Microbiol 41:503–512
    [Google Scholar]
  48. McGowan S., Sebaihia M., Jones S., Yu B., Bainton N., Chan P. F., Bycroft B. W., Stewart G. S. A. B., Williams P., Salmond G. P. C. 1995; Carbapenem antibiotic production in Erwinia carotovora is regulated by CarR, a homologue of the LuxR transcriptional activator. Microbiology 141:541–550
    [Google Scholar]
  49. McGowan S. J., Sebaihia M., Porter L. E., Stewart G. S. A. B., Williams P., Bycroft B. W., Salmond G. P. C. 1996; Analysis of bacterial carbapenem antibiotic production genes reveals a novel β -lactam biosynthesis pathway. Mol Microbiol 22:415–426
    [Google Scholar]
  50. McGowan S. J., Sebaihia M., O'Leary S., Hardie K. R., Williams P., Stewart G. S. A. B., Bycroft B. W., Salmond G. P. C. 1997; Analysis of the carbapenem gene cluster in Erwinia carotovora : definition of the biosynthetic genes and evidence for a novel β -lactam resistance mechanism. Mol Microbiol 26:545–556
    [Google Scholar]
  51. Milton D. L. 2006; Quorum sensing in vibrios: complexity for diversification. Int J Med Microbiol 296:61–71
    [Google Scholar]
  52. Milton D. L., Hardman A., Camara M., Chhabra S. R., Bycroft B. W., Stewart G. S. A. B., Williams P. 1997; Vibrio anguillarum produces multiple N -acylhomoserine lactone signal molecules. J Bacteriol 179:3004–3012
    [Google Scholar]
  53. Milton D. L., Chalker V. J., Kirke D., Hardman A., Cámara M., Williams P. 2001; The LuxM homologue VanM from Vibrio anguillarum directs the synthesis of N -(3-hydroxyhexanoyl)homoserine lactone and N -hexanoylhomoserine lactone. J Bacteriol 183:3537–3547
    [Google Scholar]
  54. Moré M. I., Finger L. D., Stryker J. L., Fuqua C., Eberhard A., Winans S. C. 1996; Enzymatic synthesis of a quorum-sensing autoinducer through use of defined substrates. Science 272:1655–1658
    [Google Scholar]
  55. Nieto Penalver C. G., Morin D., Cantet F., Saurel O., Milon A., Vorholt J. A. 2006; Methylobacterium extorquens AM1 produces a novel type of acyl-homoserine lactone with a double unsaturated side chain under methylotrophic growth conditions. FEBS Lett 580:561–567
    [Google Scholar]
  56. Ortori C. A., Atkinson S., Chhabra S. R., Camara M., Williams P., Barrett D. A. 2006; Comprehensive profiling of N -acylhomoserine lactones produced by Yersinia pseudotuberculosis using liquid chromatography coupled to hybrid quadrupole-linear ion trap mass spectrometry. Anal Bioanal Chem 387:497–511
    [Google Scholar]
  57. Palva T. K., Hurtig M., Saindrenan P., Palva E. T. 1994; Salicylic acid induced resistance to Erwinia carotovora subsp. carotovora in tobacco. Mol Plant Microbe Interact 7:356–363
    [Google Scholar]
  58. Parsek M. R., Val D. L., Hanzelka B. L., Cronan J. E., Greenberg E. P. 1999; Acyl homoserine-lactone quorum-sensing signal generation. Proc Natl Acad Sci U S A 96:4360–4365
    [Google Scholar]
  59. Patel P., Callow M. E., Joint I., Callow J. A. 2003; Specificity in the settlement-modifying response of bacterial biofilms towards zoospores of the marine alga, Enteromorpha . Environ Microbiol 5:338–349
    [Google Scholar]
  60. Pritchard D. I. 2006; Immune modulation by Pseudomonas aeruginosa quorum-sensing signal molecules. Int J Med Microbiol 296:111–116
    [Google Scholar]
  61. Pritchard D. I., Todd I., Brown A., Bycroft B. W., Chhabra S. R., Williams P., Wood P. 2005; Alleviation of insulitis and moderation of diabetes in NOD mice following treatment with a synthetic Pseudomonas aeruginosa signal molecule, N -(3-oxododecanoyl)-l-homoserine lactone. Acta Diabetol 42:119–122
    [Google Scholar]
  62. Provasoli L., Pintner I. J. 1980; Bacteria induced polymorphism in an axenic laboratory strain of Ulva lactuca (Chlorophyceae). J Phycol 16:196–201
    [Google Scholar]
  63. Qazi S., Middleton B., Muharram S. H., Cockayne A., Hill P., O'Shea P., Chhabra S. R., Cámara M., Williams P. 2006; N -Acylhomoserine lactones antagonize virulence gene expression and quorum sensing in Staphylococcus aureus . Infect Immun 74:910–919
    [Google Scholar]
  64. Redfield R. J. 2002; Is quorum sensing a side effect of diffusion sensing?. Trends Microbiol 10:365–370
    [Google Scholar]
  65. Riedel K., Hentzer M., Geisenberger O., Huber B., Steidle A., Wu H., Hoiby N., Givskov M., Molin S., Eberl L. 2001; N -Acylhomoserine-lactone-mediated communication between Pseudomonas aeruginosa and Burkholderia cepacia in mixed biofilms. Microbiology 147:3249–3262
    [Google Scholar]
  66. Rivas M., Seeger M., Jedlicki E., Holmes D. S. 2007; Second acylhomoserine production system in the extreme acidophile Acidithiobacillus ferrooxidans . Appl Environ Microbiol 73:3225–3231
    [Google Scholar]
  67. Rothfork J. M., Timmins G. S., Harris M. N., Chen X., Lusis A. J., Otto M., Cheung A. L., Gresham H. D. 2004; Inactivation of a bacterial virulence pheromone by phagocyte-derived oxidants: new role for the NADPH oxidase in host defense. Proc Natl Acad Sci U S A 101:13867–13872
    [Google Scholar]
  68. Salmond G. P., Bycroft B. W., Stewart G. S. A. B., Williams P. 1995; The bacterial ‘enigma’: cracking the code of cell-cell communication. Mol Microbiol 16:615–624
    [Google Scholar]
  69. Schuhegger R., Ihring A., Gantner S., Bahnweg G., Knappe C., Vogg G., Hutzler P., Schmid M., Van Breusegem F. other authors 2006; Induction of systemic resistance in tomato by N -acyl-l-homoserine lactone-producing rhizosphere bacteria. Plant Cell Environ 29:909–918
    [Google Scholar]
  70. Schuster M., Urnabowski M. L., Greenberg E. P. 2004; Promoter specificity in Pseudomonas aeruginosa quorum sensing revealed by DNA binding of purified LasR. Proc Natl Acad Sci U S A 101:15833–15839
    [Google Scholar]
  71. Scott R. A., Weil J., Le P. T., Williams P., Fray R., von Bodman S., Savka M. A. 2006; Long- and short-chain plant produced bacterial N -acylhomoserine lactones become components of the phyllosphere, rhizosphere and soil. Mol Plant Microbe Interact 19:227–239
    [Google Scholar]
  72. Shaw P. D., Ping G., Daly S. L., Cha C., Cronan J. E. Jr, Rinehart K. L., Farrand S. K. 1997; Detecting and characterizing N -acyl-homoserine lactone signal molecules by thin-layer chromatography. Proc Natl Acad Sci U S A 94:6036–6041
    [Google Scholar]
  73. Shiner E. K., Terentyev D., Bryan A., Sennoune S., Martinez-Zaguilan R., Li G., Gyorke S., Williams S. C., Rumbaugh K. P. 2006; Pseudomonas aeruginosa autoinducer modulates host cell responses through calcium signalling. Cell Microbiol 8:1601–1610
    [Google Scholar]
  74. Smith R. S., Kelly R., Iglewski B. H., Phipps R. P. 2002; The Pseudomonas autoinducer N -(3-oxo-dodecanoyl)homoserine lactone induces cyclooxygenase-2 and prostaglandin E2 production in human lung fibroblasts: implications for inflammation. J Immunol 169:2636–2642
    [Google Scholar]
  75. Stoltz D. A., Ozer E. A., Ng C. J., Yu J. M., Reddy S. T., Lusis A. J., Bourquard N., Parsek M. R., Zabner J., Shih D. M. 2007; Paraoxonase-2 deficiency enhances Pseudomonas aeruginosa quorum sensing in murine tracheal epithelia. Am J Physiol Lung Cell Mol Physiol 292:L852–L860
    [Google Scholar]
  76. Swift S., Winson M. K., Chan P. F., Bainton N. J., Birdsall M., Reeves P. J., Rees C. E. D., Chhabra S. R., Hill P. J. other authors 1993; A novel strategy for the isolation of luxI homologues: evidence for the widespread distribution of a LuxR : LuxI superfamily in enteric bacteria. Mol Microbiol 10:511–520
    [Google Scholar]
  77. Swift S., Karlyshev A. V., Durant E. L., Winson M. K., Williams P., Macintyre S., Stewart G. S. A. B. 1997; Quorum sensing in Aeromonas hydrophila and Aeromonas salmonicida : identification of the LuxRI homologues AhyRI and AsaRI and their cognate signal molecules. J Bacteriol 179:5271–5281
    [Google Scholar]
  78. Swift S., Lynch M. J., Fish L., Kirke D. F., Tomas J. M., Stewart G. S. A. B., Williams P. 1999; Quorum sensing dependent regulation and blockade of exoprotease production in Aeromonas hydrophila . Infect Immun 67:5192–5199
    [Google Scholar]
  79. Tait K., Joint I., Daykin M., Milton D. L., Williams P., Camara M. 2005; Disruption of quorum sensing in seawater abolishes attraction of zoospores of the green alga Ulva to bacterial biofilms. Environ Microbiol 7:229–240
    [Google Scholar]
  80. Telford G., Wheeler D., Williams P., Tomkins P. T., Appleby P., Sewell H., Stewart G. S. A. B., Bycroft B. W., Pritchard D. I. 1998; The Pseudomonas aeruginosa quorum sensing signal molecule, N -(3-oxododecanoyl)-l-homoserine lactone has immunomodulatory activity. Infect Immun 66:36–42
    [Google Scholar]
  81. Throup J. P., Camara M., Briggs G. S., Winson M. K., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S. A. B. 1995; Characterisation of the yenI/yenR locus from Yersinia enterocolitica mediating the synthesis of two quorum sensing molecules. Mol Microbiol 17:345–356
    [Google Scholar]
  82. Toth I. K., Newton J. A., Hyman L. J., Lees A. K., Daykin M., Otori C., Williams P., Fray R. G. 2004; Potato plants genetically modified to produce N -acylhomoserine lactones increase susceptibility to soft rot erwiniae. Mol Plant Microbe Interact 17:880–887
    [Google Scholar]
  83. Urbanowski M. L., Lostroh C. P., Greenberg E. P. 2004; Reversible acylhomoserine lactone binding to purified Vibrio fischeri LuxR protein. J Bacteriol 186:631–637
    [Google Scholar]
  84. Uroz S., Chhabra S. R., Camara M., Williams P., Oger P., Dessaux Y. 2005; N -Acylhomoserine lactone quorum-sensing molecules are modified and degraded by Rhodococcus erythropolis W2 by both amidolytic and novel oxidoreductase activities. Microbiology 151:3313–3322
    [Google Scholar]
  85. Valle A., Bailey M. J., Whiteley A. S., Manefield M. 2004; N-Acyl-l-homoserine lactones (AHLs) affect microbial community composition and function in activated sludge. Environ Microbiol 6:424–433
    [Google Scholar]
  86. Vikstrom E., Tafazoli F., Magnusson K.-E. 2006; Pseudomonas aeruginosa quorum sensing signal molecule N -(3-oxododecanoyl)-l-homoserine lactone. FEBS Lett 580:6921–6928
    [Google Scholar]
  87. Watson W. T., Minogue T. D., Val D. L., Beck von Bodman S., Churchill M. E. A. 2002; Structural basis and specificity of acyl homoserine lactone signal production in bacterial quorum sensing. Mol Cell 9:685–694
    [Google Scholar]
  88. Wei J. R., Tsai Y.-H., Horng Y. T., Soo P.-C., Hsieh S.-C., Hsueh P.-R., Horng J.-T., Williams P., Lai H.-C. 2006; Tn TIR , a mobile Tn 3 -family transposon carrying spnIR quorum sensing unit. J Bacteriol 188:1518–1525
    [Google Scholar]
  89. West S. A., Griffin A. S., Gardner A., Diggle S. P. 2006; Social evolution theory for microorganisms. Nat Rev Microbiol 4:597–607
    [Google Scholar]
  90. Wheeler G. L., Tait K., Taylor A., Brownlee C., Joint I. 2006; Acyl-homoserine lactones modulate the settlement rate of zoospores of the marine alga Ulva intestinalis via a novel chemokinetic mechanism. Plant Cell Environ 29:608–618
    [Google Scholar]
  91. Williams P. 2002; Quorum sensing: an emerging target for antibacterial chemotherapy?. Expert Opin Ther Targets 6:257–274
    [Google Scholar]
  92. Williams P., Winzer K., Chan W., Camara M. 2007; Look who's talking: communication and quorum sensing in the bacterial world. Philos Trans R Soc Lond B Biol Sci 362:1119–1134
    [Google Scholar]
  93. Winson M. K., Camara M., Latifi A., Foglino M., Chhabra S. R., Daykin M., Chapon V., Bycroft B. W., Salmond G. P. C. other authors 1995; Multiple quorum sensing modulons interactively regulate virulence and secondary metabolism in Pseudomonas aeruginosa : identification of the signal molecules N -butanoyl-l-homoserine lactone and N -hexanoyl-l-homoserine lactone. Proc Natl Acad Sci U S A 92:9427–9431
    [Google Scholar]
  94. Winson M. K., Swift S., Fish L., Throup J. P., Jorgensen F., Chhabra S. R., Bycroft B. W., Williams P., Stewart G. S. A. B. 1998; Construction and analysis of luxCDABE -based plasmid sensors for investigating N -acyl homoserine lactone-mediated quorum sensing. FEMS Microbiol Lett 163:185–192
    [Google Scholar]
  95. Winzer K., Falconer C., Garber N. C., Diggle S. P., Cámara M., Williams P. 2000; The Pseudomonas aeruginosa lectins PA-IL and PA-IIL are controlled by quorum sensing and by RpoS. J Bacteriol 182:6401–6411
    [Google Scholar]
  96. Winzer K., Hardie K. R., Williams P. 2002; Bacterial cell-to-cell communication: sorry can't talk now – gone to lunch!. Curr Opin Microbiol 5:216–222
    [Google Scholar]
  97. Wu L., Estrada O., Zaborina O., Bains M., Shen L., Kohler J. E., Patel N., Musch M. W., Chang E. B. other authors 2005; Recognition of host immune activation by Pseudomonas aeruginosa . Science 309:774–777
    [Google Scholar]
  98. Yates E. A., Philipp B., Buckley C., Atkinson S., Chhabra S. R., Sockett R. E., Goldner M., Dessaux Y., Cámara M. other authors 2002; N -Acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa . Infect Immun 70:5635–5646
    [Google Scholar]
  99. Yuan Z.-C., Edlind M. P., Liu P., Saenkham P., Banta L. M., Wise A. A., Ronzone E., Binns A. N., Kerr K., Nester W. 2007; The plant signal salicylic acid shuts down expression of the vir regulon and activates quormone-quenching genes in Agrobacterium . Proc Natl Acad Sci U S A 104:11790–11795
    [Google Scholar]
  100. Yim G., Wang H. H., Davies J. 2007; Antibiotics as signalling molecules. Philos Trans R Soc Lond B Biol Sci 362:1195–1200
    [Google Scholar]
  101. Zaborina O., Lepine F., Xiao G., Valuckaite V., Chen Y., Li T., Ciancio M., Zaborin A., Petroff E. other authors 2007; Dynorphin activates quorum sensing quinolone signalling in Pseudomonas aeruginosa . PLoS Pathogens 3:e35
    [Google Scholar]
  102. Zhang R. G., Pappas T., Brace J. L., Miller P. C., Oulmassov T., Molyneaux J. M., Anderson J. C., Bashkin J. K., Winans S. C., Joachimiak A. 2002; Structure of a bacterial quorum sensing transcription factor complexed with pheromone and DNA. Nature 417:971–974
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/012856-0
Loading
/content/journal/micro/10.1099/mic.0.2007/012856-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error