1887

Abstract

High rates of sulfidogenesis were observed in sediments from hypersaline soda lakes. Anaerobic enrichment cultures at 2 M Na and pH 10 inoculated with sediment samples from these lakes produced sulfide most actively with sulfite and thiosulfate as electron acceptors, and resulted in the isolation of three pure cultures of extremely natronophilic sulfidogenic bacteria. Strain ASO3-1 was isolated using sulfite as a sole substrate, strain AHT 8 with thiosulfate and formate, and strain AHT 6 with thiosulfate and acetate. All strains grew in a mineral soda-based medium by dismutation of either sulfite or thiosulfate, as well as with sulfite, thiosulfate and sulfate as acceptors, and H and simple organic compounds as electron donors. The acetyl-CoA pathway was identified as the pathway for inorganic carbon assimilation by strain ASO3-1. All strains were obligately alkaliphilic, with an optimum at pH 9.5–10, and grew in soda brines containing 1–4 M total Na (optimum at 1.0–2.0 M). The cells accumulated high amounts of the organic osmolyte glycine betaine. They formed a new lineage within the family (), for which the name gen. nov. is proposed. Strains ASO3-1 and AHT 8 from Kulunda Steppe formed sp. nov., and strain AHT 6 from Wadi al Natrun is suggested as sp. nov.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.2007/015628-0
2008-05-01
2024-04-23
Loading full text...

Full text loading...

/deliver/fulltext/micro/154/5/1444.html?itemId=/content/journal/micro/10.1099/mic.0.2007/015628-0&mimeType=html&fmt=ahah

References

  1. Bak F., Pfennig N. 1987; Chemolithotrophic growth of Desulfovibrio sulfodismutans sp. nov. by disproportionation of inorganic sulfur compounds. Arch Microbiol 147:184–189
    [Google Scholar]
  2. Belyakova E. V., Rozanova E. P., Borzenkov I. A., Tourova T. P., Pusheva M. A., Lysenko A. M., Kolganova T. V. 2006; The new facultatively chemolithoautotrophic, moderately halophilic, sulfate-reducing bacterium Desulfovermiculus halophilus gen.nov., sp. nov., isolated from an oil field. Microbiology (English translation of Mikrobiologiia ) 75:161–171
    [Google Scholar]
  3. De Ley J., Caffon H., Reinaerts A. 1970; The quantitative measurement of DNA hybridization from renaturation rates. Eur J Biochem 12:133–140
    [Google Scholar]
  4. Finster K., Liesack W., Thamdrup B. 1998; Elemental sulfur and thiosulfate disproportionation by Desulfocapsa sulfoexigens sp. nov., a new anaerobic bacterium isolated from marine surface sediment. Appl Environ Microbiol 64:119–125
    [Google Scholar]
  5. Foti M., Sorokin D. Yu., Lomans B., Mussmann M., Zacharova E. E., Pimenov N. V., Kuenen J. G., Muyzer G. 2007; Diversity, activity and abundance of sulfate-reducing bacteria in saline and hypersaline soda lakes. Appl Environ Microbiol 73:2093–2100
    [Google Scholar]
  6. Foti M. J., Sorokin D. Yu., Zacharova E. E., Pimenov N. V., Kuenen J. G., Muyzer G. 2008; Bacterial diversity and activity along a salinity gradient in soda lakes of the Kulunda Steppe (Altai, Russia. Extremophiles 12:133–145
    [Google Scholar]
  7. Galinski E. A., Herzog R. M. 1990; The role of trehalose as a substitute for nitrogen-containing compatible solutes. Arch Microbiol 153:607–613
    [Google Scholar]
  8. Hinsley A. P., Berks B. C. 2002; Specificity of respiratory pathways involved in the reduction of sulfur compounds by Salmonella enterica . Microbiology 148:3631–3638
    [Google Scholar]
  9. Janssen P. H., Schuhmann A., Bak F., Liesack W. 1996; Disproportionation of inorganic sulfur compounds by the sulfate-reducing bacterium Desulfocapsa thiozymogenes gen. nov., sp. nov. Arch Microbiol 166:184–192
    [Google Scholar]
  10. Jørgensen B. B. 1990; A thiosulfate shunt in the sulfur cycle of marine sediments. Science 249:152–154
    [Google Scholar]
  11. Kulp T. R., Hoeft S. E., Miller L. G., Saltikov C., Murphy J. N., Han S., Lanoil B., Oremland R. S. 2006; Dissimilatory arsenate and sulfate reduction in sediments of two hypersaline, arsenic-rich soda lakes: Mono and Searles Lakes, California. Appl Environ Microbiol 72:6514–6526
    [Google Scholar]
  12. Marmur J. 1961; A procedure for isolation of DNA from microorganisms. J Mol Biol 3:208–214
    [Google Scholar]
  13. Marmur J., Doty P. 1962; Determination of the base composition of deoxyribonucleic acid from microorganisms. J Mol Biol 5:109–118
    [Google Scholar]
  14. Ollivier B., Hatchikian C. E., Prensier G., Guezennec J., Garcia J. L. 1991; Desulfohalobium retbaense gen. nov., sp. nov: a halophilic sulfate reducing bacterium from sediments of a hypersaline lake in Senegal. Int J Syst Bacteriol 41:74–81
    [Google Scholar]
  15. Oren A. 1999; Bioenergetic aspects of halophilism. Microbiol Mol Biol Rev 63:334–348
    [Google Scholar]
  16. Pfennig N., Lippert K. D. 1966; Über das Vitamin B12-Bedürfnis phototropher Schwefelbacterien. Arch Microbiol 55:245–256 in German
    [Google Scholar]
  17. Pikuta E. V., Zhilina T. N., Zavarzin G. A., Kostrikina N. A., Osipov G. A., Rainey F. A. 1998; Desulfonatronum lacustre gen. nov., sp. nov.: a new alkaliphilic sulfate-reducing bacterium utilizing ethanol. Microbiology English translation of Mikrobiologiia 67:105–113
    [Google Scholar]
  18. Pikuta E. V., Hoover R. B., Bej A. K., Marsic D., Whitman W. B., Cleland D., Krader P. 2003; Desulfonatronum thiodismutans sp. nov., a novel alkaliphilic, sulfate-reducing bacterium capable of lithoautotrophic growth. Int J Syst Evol Microbiol 53:1327–1332
    [Google Scholar]
  19. Ryu J.-H., Dahlgren R. A., Gao S., Tanji K. K. 2004; Characterization of redox processes in shallow groundwater of Owens Dry Lake, California. Environ Sci Technol 38:5950–5957
    [Google Scholar]
  20. Schauder R., Widdel F., Fuchs G. 1987; Carbon assimilation pathways in sulfate-reducing bacteria II. Enzymes of a reductive citric acid cycle in the autotrophic Desulfobacter hydrogenophilus . Arch Microbiol 148:218–225
    [Google Scholar]
  21. Scholten J. C. M., Joye S. B., Hollibaugh J. T., Murrell J. C. 2005; Molecular analysis of the sulfate reducing and archaeal community in a meromictic soda lake (Mono Lake, California) by targeting 16S rRNA, mcrA , apsA , and dsrAB genes. Microb Ecol 50:29–39
    [Google Scholar]
  22. Sorokin D. Yu., Kuenen J. G. 2005; Haloalkaliphilic sulfur-oxidizing bacteria in soda lakes. FEMS Microbiol Rev 29:685–702
    [Google Scholar]
  23. Sorokin D. Y., Gorlenko V. M., Namsaraev Z. B., Lysenko A. M., Eshinimaev B. T., Khmelenina V. N., Trotsenko Y. A., Kuenen J. G. 2004; Prokaryotic communities of the north-eastern Mongolian soda lakes. Hydrobiologia 522:235–248
    [Google Scholar]
  24. Sorokin D. Y., Banciu H., Robertson L. A., Kuenen J. G. 2006; Haloalkaliphilic sulfur-oxidizing bacteria. In The Prokaryotes vol. 2Ecophysiology and Biochemistry pp 969–984 Edited by Dworkin M., Falkow S., Rosenberg E., Schleifer K. H., Stackebrandt E. New York: Springer;
    [Google Scholar]
  25. Sydow U., Wohland P., Wolke I., Cypionka H. 2002; Bioenergetics of the alkaliphilic sulfate-reducing bacterium Desulfonatronovibrio hydrogenovorans . Microbiology 148:853–860
    [Google Scholar]
  26. Trüper H. G., Schlegel H. G. 1964; Sulfur metabolism in Thiorhodaceae . 1. Quantitative measurements on growing cells of Chromatium okenii . Antonie Van Leeuwenhoek 30:225–238
    [Google Scholar]
  27. Van de Peer Y., De Wachter R. 1994; treecon for Windows: a software package for the construction and drawing of evolutionary trees for the Microsoft Windows environment. Comput Appl Biosci 10:569–570
    [Google Scholar]
  28. Van den Bosch P. L. F., van Beusekom O. C., Buisman C. J. N., Janssen A. J. H. 2007; Sulfide oxidation at halo-alkaline conditions in a fed-batch bioreactor. Biotechnol Bioeng 97:1053–1063
    [Google Scholar]
  29. Zeikus J. G., Fuchs G., Kenealy W., Thauer R. K. 1977; Oxidoreductases involved in cell carbon synthesis of Methanobacterium thermoautotrophicum . J Bacteriol 132:604–613
    [Google Scholar]
  30. Zhilina T. N., Zavarzin G. A., Rainey F. A., Pikuta E. N., Osipov G. A., Kostrikina N. A. 1997; Desulfonatronovibrio hydrogenovorans gen. nov., sp. nov., an alkaliphilic, sulfate-reducing bacterium. Int J Syst Bacteriol 47:144–149
    [Google Scholar]
  31. Zhilina T. N., Zavarzina D. G., Kuever J., Lysenko A. M., Zavarzin G. A. 2005; Desulfonatronum cooperativum sp. nov., a novel hydrogenotrophic, alkaliphilic, sulfate-reducing bacterium, from a syntrophic culture growing on acetate. Int J Syst Evol Microbiol 55:1001–1006
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.2007/015628-0
Loading
/content/journal/micro/10.1099/mic.0.2007/015628-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error