
f The Candida albicans CTR1 gene encodes a functional copper transporter
- Authors: Marcus E. Marvin1 , Peter H. Williams2 , Annette M. Cashmore1
-
- VIEW AFFILIATIONS
-
1 1Department of Genetics, University of Leicester, Leicester LE1 7RH, UK 2 2Department of Microbiology and Immunology, University of Leicester, Leicester LE1 7RH, UK
- CorrespondenceAnnette M. Cashmore [email protected]
- First Published Online: 01 June 2003, Microbiology 149: 1461-1474, doi: 10.1099/mic.0.26172-0
- Subject: Genes And Genomes
- Received:
- Accepted:
- Revised:
- Cover date:




The Candida albicans CTR1 gene encodes a functional copper transporter, Page 1 of 1
< Previous page | Next page > /docserver/preview/fulltext/micro/149/6/1461-1.gif
-
Copper and iron uptake in Saccharomyces cerevisiae are linked through a high-affinity ferric/cupric-reductive uptake system. Evidence suggests that a similar system operates in Candida albicans. The authors have identified a C. albicans gene that is able to rescue a S. cerevisiae ctr1/ctr3-null mutant defective in high-affinity copper uptake. The 756 bp ORF, designated CaCTR1, encodes a 251 amino acid protein with a molecular mass of 27·8 kDa. Comparisons between the deduced amino acid sequence of the C. albicans Ctr1p and S. cerevisiae Ctr1p indicated that they share 39·6 % similarity and 33·0 % identity over their entire length. Within the predicted protein product of CaCTR1 there are putative transmembrane regions and sequences that resemble copper-binding motifs. The promoter region of CaCTR1 contains four sequences with significant identity to S. cerevisiae copper response elements. CaCTR1 is transcriptionally regulated in S. cerevisiae in response to copper availability by the copper-sensing transactivator Mac1p. Transcription of CaCTR1 in C. albicans is also regulated in a copper-responsive manner. This raises the possibility that CaCTR1 may be regulated in C. albicans by a Mac1p-like transactivator. A C. albicans ctr1-null mutant displays phenotypes consistent with the lack of copper uptake including growth defects in low-copper and low-iron conditions, a respiratory deficiency and sensitivity to oxidative stress. Furthermore, changes in morphology were observed in the C. albicans ctr1-null mutant. It is proposed that CaCTR1 facilitates transport of copper into the cell.
-
The GenBank accession number for the sequence reported in this paper is AJ277398.
- Keyword(s): CuRE, copper response element, BPS, bathophenanthroline disulphonic acid, BCS, bathocuproine disulphonic acid
SGM
-
Altschul, S. F., Madden, T. L., Schaffer, A. A., Zhang, J., Zhang, Z., Miller, W. & Lipman, D. J. ( 1997; ). Gapped BLAST and PSI-BLAST: a new generation of protein database search programs. Nucleic Acids Res 25, 3389–3402.[CrossRef]
-
Angrave, F. E. & Avery, S. V. ( 2001; ). Antioxidant functions required for insusceptibility of Saccharomyces cerevisiae to tetracycline antibiotics. Antimicrob Agents Chemother 45, 2939–2942.[CrossRef]
-
Askwith, C., Eide, D., Van Ho, A., Bernard, P. S., Li, L., Davis-Kaplan, S., Sipe, D. M. & Kaplan, J. ( 1994; ). The FET3 gene of S. cerevisiae encodes a multicopper oxidase required for ferrous iron uptake. Cell 76, 403–410.[CrossRef]
-
Avery, S. V., Malkapuram, D., Mateus, C. & Babb, K. S. ( 2000; ). Copper/zinc-superoxide dismutase is required for oxytetracycline resistance in Saccharomyces cerevisiae. J Bacteriol 182, 76–80.[CrossRef]
-
Berben, G., Dumont, J., Gilliquet, V., Bolle, P. A. & Hilger, F. ( 1991; ). The YDp plasmids – a uniform set of vectors bearing versatile gene disruption cassettes for Saccharomyces cerevisiae. Yeast 7, 475–477.[CrossRef]
-
Braun, B. R. & Johnson, A. D. ( 1997; ). Control of filament formation in Candida albicans by the transcriptional repressor TUP1. Science 277, 105–109.[CrossRef]
-
Brendel, V., Bucher, P., Nourbakhsh, I., Blaisdell, B. E. & Karlin, S. ( 1992; ). Methods and algorithms for statistical analysis of protein sequences. Proc Natl Acad Sci U S A 89, 2002–2006.[CrossRef]
-
Cha, J. S. & Cooksey, D. A. ( 1991; ). Copper resistance in Pseudomonas syringae mediated by periplasmic and outer membrane proteins. Proc Natl Acad Sci U S A 88, 8915–8919.[CrossRef]
-
Chaffin, W. L., López-Ribot, J. L., Casanova, M., Gozalbo, D. & Martínez, J. P. ( 1998; ). Cell wall and secreted proteins of Candida albicans: identification, function, and expression. Microbiol Rev 62, 130–180.
-
Church, G. M. & Gilbert, W. ( 1984; ). Genomic sequencing. Proc Natl Acad Sci U S A 81, 1991–1995.[CrossRef]
-
Culotta, V. C., Klomp, L. W. J., Strain, J., Casareno, R. L. B., Krems, B. & Gitlin, J. D. ( 1997; ). The copper chaperone for superoxide dismutase. J Biol Chem 272, 23469–23472.[CrossRef]
-
Dancis, A., Klausner, R. D., Hinnebusch, A. G. & Barriocanal, J. G. ( 1990; ). Genetic evidence that ferric-reductase is required for iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 10, 2294–2301.
-
Dancis, A., Roman, D. G., Anderson, G. J., Hinnebusch, A. G. & Klausner, R. D. ( 1992; ). Ferric-reductase of Saccharomyces cerevisiae: molecular characterization, role in iron uptake and transcriptional control by iron. Proc Natl Acad Sci U S A 89, 3869–3873.[CrossRef]
-
Dancis, A., Yuan, D. S., Haile, D., Askwith, C., Eide, D., Moehle, C., Kaplan, J. & Klausner, R. D. ( 1994a; ). Molecular characterization of a copper transport protein in Saccharomyces cerevisiae: an unexpected role for copper in iron transport. Cell 76, 393–402.[CrossRef]
-
Dancis, A., Haile, D., Yuan, D. S. & Klausner, R. D. ( 1994b; ). The Saccharomyces cerevisiae copper transport protein (Ctr1p): biochemical characterization, regulation by copper, and physiological role in copper uptake. J Biol Chem 269, 25660–25667.
-
Davis, D., Edwards, J. E., Jr, Mitchell, A. P. & Ibrahim, A. S. ( 2000; ). Candida albicans RIM101 pH response pathway is required for host-pathogen interactions. Infect Immun 68, 5953–5959.[CrossRef]
-
De Silva, D. M., Askwith, C. C., Eide, D. & Kaplan, J. ( 1995; ). The FET3 gene product required for high affinity iron transport in yeast is a cell surface ferroxidase. J Biol Chem 270, 1098–1101.[CrossRef]
-
Dix, D. R., Bridgham, J. T., Broderius, M. A., Byersdorfer, C. A. & Eide, D. J. ( 1994; ). The FET4 gene encodes the low affinity Fe(II) transport protein of Saccharomyces cerevisiae. J Biol Chem 269, 26092–26099.
-
Eck, R., Hundt, S., Hartl, A., Roemer, E. & Kunkel, W. ( 1999; ). A multicopper oxidase gene from Candida albicans: cloning, characterization and disruption. Microbiology 145, 2415–2422.
-
Eide, D., Davis-Kaplan, S., Jordan, I., Sipe, D. & Kaplan, J. ( 1992; ). Regulation of iron uptake in Saccharomyces cerevisiae: the ferrireductase and Fe(II) transporter are regulated independently. J Biol Chem 267, 20774–20781.
-
Fratti, R. A., Belanger, P. H., Ghannoum, M. A. EdwardsJ. E., Jr & Filler, S. G. ( 1998; ). Endothelial cell injury caused by Candida albicans is dependent on iron. Infect Immun 66, 191–196.
-
Georgatsou, E. & Alexandraki, D. ( 1994; ). Two distinctly regulated genes are required for ferric reduction, the first step of iron uptake in Saccharomyces cerevisiae. Mol Cell Biol 14, 3065–3073.
-
Georgatsou, E., Mavrogiannis, L. A., Fragiadakis, G. S. & Alexandraki, D. ( 1997; ). The yeast Fre1p/Fre2p cupric reductases facilitate copper uptake and are regulated by the copper-modulated Mac1p activator. J Biol Chem 272, 13786–13792.[CrossRef]
-
Gietz, R. D., St Jean, A., Woods, R. A. & Schiestl, R. H. ( 1992; ). Improved method for high efficiency transformation of intact yeast cells. Nucleic Acids Res 20, 1425.[CrossRef]
-
Gillum, A. M., Tsay, E. Y. H. & Kirsch, D. R. ( 1984; ). Isolation of the Candida albicans gene for orotidine-5′-phosphate decarboxylase by complementation of S. cerevisiae URA3 and E. coli pyrF mutations. Mol Gen Genet 198, 179–182.[CrossRef]
-
Glerum, D. M., Shtanko, A. & Tzagoloff, A. ( 1996; ). Characterization of COX17, a yeast gene involved in copper metabolism and assembly of cytochrome oxidase. J Biol Chem 271, 14504–14509.[CrossRef]
-
Goshorn, A. K., Grindle, S. M. & Scherer, S. ( 1992; ). Gene isolation by complementation in Candida albicans and applications to physical and genetic mapping. Infect Immun 60, 876–884.
-
Graden, J. A. & Winge, D. R. ( 1997; ). Copper-mediated repression of the activation domain in the yeast Mac1p transcription factor. Proc Natl Acad Sci U S A 94, 5550–5555.[CrossRef]
-
Hammacott, J. E., Williams, P. H. & Cashmore, A. M. ( 2000; ). Candida albicans CFL1 encodes a functional ferric-reductase activity that can rescue a Saccharomyces cerevisiae fre1 mutant. Microbiology 146, 869–876.
-
Hassett, R., Dix, D. R., Eide, D. J. & Kosman, J. ( 2000; ). The Fe(II) permease Fet4p functions as a low affinity copper transporter and supports normal copper trafficking in Saccharomyces cerevisiae. Biochem J 351, 477–484.[CrossRef]
-
Heymann, P., Ernst, J. F. & Winkelmann, G. ( 2000; ). Identification and substrate specificity of a ferrichrome-type siderophore transporter (Arn1p) in Saccharomyces cerevisiae. FEMS Microbol Lett 186, 221–227.[CrossRef]
-
Holm, C., Meek-Wagner, D. W., Fangman, W. L. & Botstein, D. ( 1986; ). A rapid efficient method for isolating DNA from yeast. Gene 42, 169–173.[CrossRef]
-
Ish-Horowicz, D. & Burke, J. F. ( 1981; ). Rapid and efficient cosmid cloning. Nucleic Acids Res 9, 2989–2998.[CrossRef]
-
Ismail, A., Bedell, G. W. & Lupan, D. M. ( 1985; ). Siderophore production by the pathogenic yeast, Candida albicans. Biochem Biophys Res Commun 130, 885–891.[CrossRef]
-
Joshi, A., Serpe, M. & Kosman, D. J. ( 1999; ). Evidence for (Mac1p)2. DNA ternary complex formation in Mac1p-dependent transactivation at the CTR1 promoter. J Biol Chem 274, 218–226.[CrossRef]
-
Jungmann, J., Reins, H.-A., Lee, J., Romeo, A., Hassett, R., Kosman, D. & Jentsch, S. ( 1993; ). MAC1, a nuclear regulatory protein related to Cu-dependent transcription factors is involved in Cu/Fe utilisation and stress resistance in yeast. EMBO J 12, 5051–5056.
-
Kampfenkel, K., Kushnir, S., Babiychuk, E., Inzé, D. & Van Montagu, M. ( 1995; ). Molecular characterization of a putative Arabidopsis thaliana copper transporter and its yeast homologue. J Biol Chem 270, 28479–28486.[CrossRef]
-
Knight, S. A. B., Labbe, S., Kwon, L. F., Kosman, D. J. & Thiele, D. J. ( 1996; ). A widespread transposable element masks expression of a yeast copper transport gene. Genes Dev 10, 1917–1929.[CrossRef]
-
Labbe, S., Zhu, Z. & Thiele, D. J. ( 1997; ). Copper-specific transcriptional repression of yeast genes encoding critical components in the copper transport pathway. J Biol Chem 272, 15951–15958.[CrossRef]
-
Lesuisse, E. & Labbe, P. ( 1989; ). Reductive and non-reductive mechanisms of iron assimilation by the yeast Saccharomyces cerevisiae. J Gen Microbiol 135, 257–263.
-
Lesuisse, E., Simon-Casteras, M. & Labbe, P. ( 1998; ). Siderophore-mediated iron uptake in Saccharomyces cerevisiae: the SIT1 gene encodes a ferrioxamine B permease that belongs to the major facilitator superfamily. Microbiology 144, 3455–3462.[CrossRef]
-
Lin, S. J., Pufahl, R. A., Dancis, A., O'Halloran, T. V. & Culotta, V. C. ( 1997; ). A role for the Saccharomyces cerevisiae ATX1 gene in copper trafficking and iron transport. J Biol Chem 272, 9215–9220.[CrossRef]
-
Liu, X. L. & Culotta, V. C. ( 1994; ). The requirement for yeast superoxide dismutase is bypassed through mutations in BSD2, a novel metal homeostasis gene. Mol Cell Biol 14, 7037–7045.
-
Mandel, M. & Higa, A. ( 1970; ). Calcium-dependent bacteriophage DNA infection. J Mol Biol 53, 159–162.[CrossRef]
-
Manns, J. M., Mosser, D. M. & Buckley, J. R. ( 1994; ). Production of hemolytic factor by Candida albicans. Infect Immun 62, 5154–5156.
-
Martins, L. J., Jensen, L. T., Simon, J. R., Keller, G. L. & Winge, D. R. ( 1998; ). Metalloregulation of FRE1 and FRE2 homologs in Saccharomyces cerevisiae. J Biol Chem 273, 23716–23721.[CrossRef]
-
Moors, M. A., Stull, T. L., Blank, K. J., Buckley, H. R. & Mosser, D. M. ( 1992; ). A role for complement receptor-like molecules in iron acquisition by Candida albicans. J Exp Med 175, 1643–1651.[CrossRef]
-
Morrissey, J. A., Williams, P. H. & Cashmore, A. M. ( 1996; ). Candida albicans has a cell-associated ferric-reductase activity which is regulated in response to levels of iron and copper. Microbiology 142, 485–492.[CrossRef]
-
Odermatt, A., Suter, H., Krapf, R. & Soloiz, M. ( 1993; ). Primary structure of two P-type ATPases involved in copper homeostasis in Enterococcus hirae. J Biol Chem 268, 12775–12779.
-
Pearson, V. R. & Lipman, D. J. ( 1988; ). Improved tools for biological sequence analysis. Proc Natl Acad Sci U S A 85, 2444–2448.[CrossRef]
-
Pufahl, R. A., Singer, C. P., Pearisos, K. L., Lin, S. J., Schmidt, P. J., Fahrni, C. J., Culotta, V. C., Penner-Hahn, J. E. & O'Halloran, T. V. ( 1997; ). Metal chaperone function of the soluble Cu(I) receptor Atx1. Science 278, 853–856.[CrossRef]
-
Radisky, D. & Kaplan, J. ( 1999; ). Regulation of transition metal transport across the yeast plasma membrane. J Biol Chem 274, 4481–4484.[CrossRef]
-
Ramanan, N. & Wang, Y. ( 2000; ). A high-affinity iron permease essential for Candida albicans virulence. Science 288, 1062–1064.[CrossRef]
-
Rothstein, R. J. ( 1983; ). One-step gene disruption in yeast. Methods Enzymol 101, 202–211.
-
Scherer, S. & Magee, P. T. ( 1990; ). Genetics of Candida albicans. Microbiol Rev 54, 226–241.
-
Schmidt, M. E., Brown, T. A. & Trumpower, B. L. ( 1990; ). A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res 18, 3091.[CrossRef]
-
Stearman, R., Yuan, D. S., Yamaguichi-Iwai, Y., Klausner, R. & Dancis, A. ( 1996; ). A permease-oxidase complex involved in high affinity iron uptake in yeast. Science 271, 1552–1557.[CrossRef]
-
Sweet, S. P. & Douglas, L. J. ( 1991; ). Effect of iron deprivation on surface composition and virulence derminants of Candida albicans. J Gen Microbiol 137, 859–865.[CrossRef]
-
Valenti, P., Visca, P., Antonini, G. & Orsi, N. ( 1986; ). Interaction between lactoferrin and ovotransferrin and Candida cells. FEMS Microbiol Lett 33, 271–275.[CrossRef]
-
Van Helden, J. V., Andre, B. & Collado-Vides, J. ( 2000; ). A web site for the computational analysis of yeast regulatory sequences. Yeast 16, 177–187.[CrossRef]
-
Weissman, Z., Berdiceevsky, I., Cavari, B. -Z. & Kornitzer, D. ( 2000; ). The high copper tolerance of Candida albicans is mediated by a P-type ATPase. Proc Natl Acad Sci U S A 97, 3520–3525.[CrossRef]
-
Wickerham, L. J. ( 1951; ). Taxonomy of yeast. U S Dep Agric Tech Bull 1029, 11–59.
-
Wilson, R. B., Davis, D. & Mitchell, A. P. ( 1999; ). Rapid hypothesis testing with Candida albicans through gene disruption with short homology regions. J Bacteriol 181, 1868–1874.
-
Yamaguchi-Iwai, Y., Dancis, A. & Klausner, R. D. ( 1995; ). AFT1: a mediator of iron regulated transcriptional control in Saccharomyces cerevisiae. EMBO J 14, 1231–1239.
-
Yamaguchi-Iwai, Y., Stearman, R., Dancis, A. & Klausner, R. D. ( 1996; ). Iron-regulated DNA binding by the AFT1 protein controls the iron regulon in yeast. EMBO J 273, 23716–23721.
-
Yamaguchi-Iwai, Y., Serpe, M., Haile, D., Yang, W., Kosman, D. J., Klausner, R. D. & Dancis, A. ( 1997; ). Homeostatic regulation of copper uptake in yeast via direct binding of MAC1 protein to upstream regulatory sequences of FRE1 and CTR1. J Biol Chem 272, 17711–17718.[CrossRef]
-
Yuan, D., Stearman, A., Dancis, A., Dunn, T., Beeler, T. & Klausner, R. D. ( 1995; ). The Menkes/Wilson disease gene homologue in yeast provides copper to a ceruloplasmin-like oxidase required for iron uptake. Proc Natl Acad Sci U S A 92, 2632–2636.[CrossRef]
-
Yun, C.-W., Ferea, T., Rashford, J., Ardon, O., Brown, P. O., Botstein, D., Kaplan, J. & Philpott, C. C. ( 2000a; ). Desferrioxamine-mediated iron uptake in Saccharomyces cerevisiae: evidence for two pathways of iron uptake. J Biol Chem 275, 10709–10715.[CrossRef]
-
Yun, C.-W., Tiedeman, J. S., Moore, R. E. & Philpott, C. C. ( 2000b; ). Siderophore-iron uptake in Saccharomyces cerevisiae: identification of ferrichrome and fusarinine transporters. J Biol Chem 275, 16354–16359.[CrossRef]
-
Yun, C.-W., Baulers, M., Moore, R. E., Klebba, P. E. & Philpott, C. C. ( 2001; ). The role of the FRE family of plasma membrane reductases in Saccharomyces cerevisiae. J Biol Chem 276, 10218–10223.[CrossRef]
-
Zhou, B. & Gitschier, J. ( 1997; ). hCTR1: a human gene for copper uptake identified by complementation in yeast. Proc Natl Acad Sci U S A 94, 7481–7486.[CrossRef]
-
Zhou, H. & Thiele, D. J. ( 2001; ). Identification of a novel high-affinity copper transport complex in the fission yeast Schizosaccharomyces pombe. J Biol Chem 276, 20529–20535.[CrossRef]

Supplementary Data
Data loading....

Article metrics loading...

Full text loading...
Author and Article Information
-
This Journal
/content/journal/micro/10.1099/mic.0.26172-0dcterms_title,dcterms_subject,pub_serialTitlepub_serialIdent:journal/micro AND -contentType:BlogPost104 -
Other Society Journals
/content/journal/micro/10.1099/mic.0.26172-0dcterms_title,dcterms_subject-pub_serialIdent:journal/micro AND -contentType:BlogPost104 -
PubMed
-
Google Scholar
Figure data loading....