1887

Abstract

The Gram-positive bacterium has a complete set of enzymes for the tricarboxylic acid (TCA) cycle and can grow aerobically using most of the TCA cycle intermediates (malate, fumarate, succinate and citrate) as a sole carbon source. The genome sequence contains three paralogous two-component regulatory systems, CitST, DctSR and YufLM. CitST and DctSR activate the expression of a transporter of the Mg–citrate complex (CitM) and a fumarate and succinate transporter (DctP), respectively. These findings prompted an investigation of whether the YufL sensor and its cognate regulator, YufM, play a role in malate uptake. This paper reports that the YufM regulator shows binding to the promoter region of two malate transporter genes, and , and is responsible for inducing their expression . It was also found that inactivation of the or genes resulted in bacteria that could not grow in a minimal salts medium containing malate as a sole carbon source, indicating that the induction of the MaeN transporter by the YufM regulator is essential for the utilization of malate as a carbon source. Inactivation of the gene resulted in the constitutive expression of MaeN. This expression was suppressed by reintroduction of the kinase domain of YufL, indicating that the YufL sensor is required for proper signal detection and signalling specificity. The authors propose that a phosphatase activity of YufL plays an important role in the YufLM two-component regulatory system. The studies reported here have revealed that members of a set of paralogous two-component regulatory systems in , CitST, DctSR and YufLM, are involved in a related function – uptake (and metabolism) of the TCA cycle intermediates – but with distinct substrate specificities.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26257-0
2003-09-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492317.html?itemId=/content/journal/micro/10.1099/mic.0.26257-0&mimeType=html&fmt=ahah

References

  1. Anagnostopolos C., Spizizen J. 1961; Requirements for transformation in Bacillus subtilis . J Bacteriol 81:741–746
    [Google Scholar]
  2. Anne-Marie G., Kamran S., Niels F., Patrick S. 1995; Antibiotic-resistance cassettes for Bacillus subtilis . Gene 167:335–336
    [Google Scholar]
  3. Asai K., Baik S. H., Kasahara Y., Moriya S., Ogasawara N. 2000; Regulation of the transport system for C4-dicarboxylic acids in Bacillus subtilis . Microbiology 146:263–271
    [Google Scholar]
  4. Boorsma A., van der Rest M. E., Lolkema J. S., Konings W. N. 1996; Secondary transporters for citrate and the Mg2+-citrate complex in Bacillus subtilis are homologous proteins. J Bacteriol 178:6216–6222
    [Google Scholar]
  5. Bott M., Meyer M., Dimroth P. 1995; Regulation of anaerobic citrate metabolism in Klebsiella pneumoniae . Mol Microbiol 18:533–546
    [Google Scholar]
  6. Doan T., Servant P., Tojo S., Yamaguchi H., Lerondel G., Yoshida K., Fujita Y., Aymerich S. 2003; The Bacillus subtilis ywkA gene encodes a malic enzyme and its transcription is activated by the YufL/YufM two-component system in response to malate. Microbiology 149:2331–2345
    [Google Scholar]
  7. Fabret C., Feher V. A., Hoch J. A. 1999; Two-component signal transduction in Bacillus subtilis : how one organism sees its world. J Bacteriol 181:1975–1983
    [Google Scholar]
  8. Fortnagel P., Freese E. 1968; Analysis of sporulation mutants. II. Mutants blocked in the citric acid cycle. J Bacteriol 95:1431–1438
    [Google Scholar]
  9. Golby P., Davies S., Kelly D. J., Guest J. R., Andrews S. C. 1999; Identification and characterization of a two-component sensor-kinase and response-regulator system (DcuS-DcuR) controlling gene expression in response to C4-dicarboxylates in Escherichia coli . J Bacteriol 181:1238–1248
    [Google Scholar]
  10. Hirata H., Fukazawa T., Negoro S., Okada H. 1986; Structure of a β -galactosidase gene of Bacillus stearothermophilus . J Bacteriol 166:722–727
    [Google Scholar]
  11. Igo M., Losick R. 1986; Regulation of a promoter that is utilized by minor forms of RNA polymerase holoenzyme in Bacillus subtilis . J Mol Biol 191:615–624
    [Google Scholar]
  12. Janausch I. G., Zientz E., Tran Q. H., Kroger A., Unden G. 2002; C4-dicarboxylate carriers and sensors in bacteria. Biochim Biophys Acta 1553:39–56
    [Google Scholar]
  13. Kaspar S., Perozzo R., Reinelt S., Meyer M., Pfister K., Scapozza L., Bott M. 1999; The periplasmic domain of the histidine autokinase CitA functions as a highly specific citrate receptor. Mol Microbiol 33:858–872
    [Google Scholar]
  14. Kim S. B., Shin B. S., Choi S. K., Kim C. K., Park S. H. 2001; Involvement of acetyl phosphate in the in vivo activation of the response regulator ComA in Bacillus subtilis . FEMS Microbiol Lett 195:179–183
    [Google Scholar]
  15. Kim S. K., Wilmes-Riesenberg M. R., Wanner B. L. 1996; Involvement of the sensor kinase EnvZ in the in vivo activation of the response-regulator PhoB by acetyl phosphate. Mol Microbiol 22:135–147
    [Google Scholar]
  16. Kobayashi K., Ogura M., Yamaguchi H., Yoshida K., Ogasawara N., Tanaka T., Fujita Y. 2001; Comprehensive DNA microarray analysis of Bacillus subtilis two-component regulatory systems. J Bacteriol 183:7365–7370
    [Google Scholar]
  17. Krom B. P., Warner J. B., Konings W. N., Lolkema J. S. 2000; Complementary metal ion specificity of the metal-citrate transporters CitM and CitH of Bacillus subtilis . J Bacteriol 182:6374–6381
    [Google Scholar]
  18. Krom B. P., Aardema R., Lolkema J. S. 2001; Bacillus subtili s YxkJ is a secondary transporter of the 2-hydroxycarboxylate transporter family that transports l-malate and citrate. J Bacteriol 183:5862–5869
    [Google Scholar]
  19. Morimoto T., Loh P. C., Hirai T., Asai K., Kobayashi K., Moriya S., Ogasawara N. 2002; Six GTP-binding proteins of the Era/Obg family are essential for cell growth in Bacillus subtilis . Microbiology 148:3539–3552
    [Google Scholar]
  20. Moriya S., Tsujikawa E., Hassan A. K., Asai K., Kodama T., Ogasawara N. 1998; A Bacillus subtilis gene-encoding protein homologous to eukaryotic SMC motor protein is necessary for chromosome partition. Mol Microbiol 29:179–187
    [Google Scholar]
  21. Nanamiya H., Ohashi Y., Asai K., Moriya S., Ogasawara N., Fujita M., Sadaie Y., Kawamura F. 1998; ClpC regulates the fate of a sporulation initiation sigma factor, σ H protein, in Bacillus subtilis at elevated temperatures. Mol Microbiol 29:505–513
    [Google Scholar]
  22. Saier M. H. Jr, Goldman S. R., Maile R. R., Moreno M. S., Weyler W., Yang N., Paulsen I. T. 2002; Overview of transport in Bacillus subtilis . In Bacillus subtilis and Its Closest Relatives: from Genes to Cells pp 113–128 Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  23. Stock A. M., Robinson V. L., Goudreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem 69:183–215
    [Google Scholar]
  24. Vagner V., Dervyn E., Ehrlich S. D. 1998; A vector for systematic gene inactivation in Bacillus subtilis . Microbiology 144:3097–3104
    [Google Scholar]
  25. Weber A., Menzlaff E., Arbinger B., Gutensohn M., Eckerskorn C., Flugge U. I. 1995; The 2-oxoglutarate/malate translocator of chloroplast envelope membranes: molecular cloning of a transporter containing a 12-helix motif and expression of the functional protein in yeast cells. Biochemistry 34:2621–2627
    [Google Scholar]
  26. Wei Y., Guffanti A. A., Ito M., Krulwich T. A. 2000; Bacillus subtilis YqkI is a novel malic/Na+-lactate antiporter that enhances growth on malate at low protonmotive force. J Biol Chem 275:30287–30292
    [Google Scholar]
  27. Willecke K., Lange R. 1974; C4-dicarboxylate transport in Bacillus subtilis studied with 3-fluoro-l-erythro-malate as a substrate. J Bacteriol 117:373–378
    [Google Scholar]
  28. Yamamoto H., Murata M., Sekiguchi J. 2000; The CitST two-component system regulates the expression of the Mg-citrate transporter in Bacillus subtilis . Mol Microbiol 37:898–912
    [Google Scholar]
  29. Youngman P., Perkins J., Sandman K. 1985; Use of Tn 917 -mediated transcriptional gene fusions to lacZ and cat - 86 for the identification and study of regulated genes in the Bacillus subtilis chromosome. In Molecular Biology of Microbial Differentiation pp 47–54 Edited by Hoch J. A., Setlow P. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Zientz E., Bongaerts J., Unden G. 1998; Fumarate regulation of gene expression in Escherichia coli by the DcuSR ( dcuSR genes) two-component regulatory system. J Bacteriol 180:5421–5425
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26257-0
Loading
/content/journal/micro/10.1099/mic.0.26257-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error