1887

Abstract

The role of growth factors for the motility and chemotaxis of the fish pathogen was determined. Cells of were chemotactic to serine in the temperature range 5–25 °C and in 0·8–2·7 % NaCl. The chemotactic response was significantly higher at 25 °C than at 5 or 15 °C. Growth in medium with 1·5 % NaCl gave a higher response than growth with 3 % NaCl; when the salinity of the chemotaxis buffer was raised, the chemotactic response was reduced. The role of starvation was also studied; showed a high chemotactic response after starvation for 2 and 8 days. Motility and chemotaxis are important virulence factors for this bacterium. Not only was the ability to perform chemotactic motility maintained after starvation, but also it was shown that starvation does not interfere with the ability of the organism to cause infection in rainbow trout after a bath challenge. The swimming speed was reduced at lower temperatures. Within the range of salinity and starvation studied, the motile cells swam with the same velocity, indicating that under all the examined conditions has a functional flagellum and rotates it with constant speed. Phenamil, a specific inhibitor of Na-driven flagella, reduced the motility of both starved and non-starved cells of indicating that, in both cases, a Na motive force drives the flagellum.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26379-0
2004-05-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/5/mic1501283.html?itemId=/content/journal/micro/10.1099/mic.0.26379-0&mimeType=html&fmt=ahah

References

  1. Adler J. 1973; A method for measuring chemotaxis and use of the method to determine optimum conditions for chemotaxis by Escherichia coli. J Gen Microbiol 74:77–79 [CrossRef]
    [Google Scholar]
  2. Amsler C. D., Cho M., Matsumura P. 1993; Multiple factors underlying the maximum motility of Escherichia coli as cultures enter post-exponential growth. J Bacteriol 175:6238–6244
    [Google Scholar]
  3. Atsumi T., Sugiyama S., Cragoe E. J., Jr, Imae Y. 1990; Specific inhibition of the Na+-driven flagellar motors of alkalophillic Bacillus strains by the amiloride analog phenamil. J Bacteriol 172:1634–1639
    [Google Scholar]
  4. Atsumi T., McCarter L., Imae Y. 1992; Polar and lateral flagellar motors of marine Vibrio are driven by different ion-motive forces. Nature 355:182–184 [CrossRef]
    [Google Scholar]
  5. Austin B., Austin D. A. 1999 Bacterial Fish Pathogens: Disease of Farmed and Wild Fish, 3rd edn. pp. 238–240 Chichester: Praxis;
  6. Binnerup S. J., Jensen D. F., Thordal-Christensen H., Sørensen J. 1993; Detection of viable, but non-culturable Pseudomonas fluorescens DF57 in soil using a microcolony epifluorescence technique. FEMS Microbiol Ecol 12:97–105 [CrossRef]
    [Google Scholar]
  7. Biosca E. G., Amaro C., Marco-Noales E., Oliver J. D. 1996; Effect of low temperature on starvation-survival of the eel pathogen Vibrio vulnificus biotype 2. Appl Environ Microbiol 62:450–455
    [Google Scholar]
  8. Blackburn N., Fenchel T., Mitchell J. 1998; Microscale nutrient patches in planktonic habitats shown by chemotactic bacteria. Science 282:2254–2256 [CrossRef]
    [Google Scholar]
  9. Bordas M. A., Balebona M. C., Rodriguez-Maroto J. M., Borrego J. J., Morinigo M. A. 1998; Chemotaxis of pathogenic Vibrio strains towards mucus surfaces of gilt-head sea bream (Sparus aurata L.). . Appl Environ Microbiol 64:1573–1575
    [Google Scholar]
  10. Chernyak B. V., Dibrov P. A., Glagolev A. N., Sherman M. Y., Skulachev V. P. 1983; A novel type of energetics in a marine alkali-tolerant bacterium ΔμNa-driven motility and sodium cycle. FEMS Microbiol Lett 164:38–42 [CrossRef]
    [Google Scholar]
  11. Givskov M., Eberl L., Møller S., Poulsen L. K., Molin S. 1994; Responses to nutrient starvation in Pseudomonas putida KT2442: analysis of general cross-protection, cell-shape, and macromolecular content. J Bacteriol 176:4816–4824
    [Google Scholar]
  12. Hase C. C., Mekalanos J. J. 1999; Effects of changes in membrane sodium flux on virulence gene expression in Vibrio cholerae. Proc Natl Acad Sci U S A 96:3183–3187 [CrossRef]
    [Google Scholar]
  13. Hazen T. C., Dimock R. V., Esch G. W., Mansfield A., Raker M. L. 1984; Chemotactic behaviour of Aeromonas hydrophila. Curr Microbiol 10:13–18 [CrossRef]
    [Google Scholar]
  14. Hoff K. A. 1989; Survival of Vibrio anguillarum and Vibrio salmonicida at different salinities. Appl Environ Microbiol 55:1775–1786
    [Google Scholar]
  15. Kawagishi I., Maekawa Y., Atsumi T., Homma M., Imae Y. 1995; Isolation of the polar and lateral flagellum-defective mutants in V. alginolyticus and identification of their flagellar driving energy sources. J Bacteriol 177:5158–5160
    [Google Scholar]
  16. Kjelleberg S., Hermansson M., Mården P., Jones G. W. 1987; The transient phase between growth and nongrowth of heterotrophic bacteria, with emphasis on the marine environment. Annu Rev Microbiol 41:25–49 [CrossRef]
    [Google Scholar]
  17. Kojima S., Yamamoto K., Kawagashi I., Homma M. 1999a; The polar flagellar motor of Vibrio cholerae is driven by an Na+ motive force. J Bacteriol 181:1927–1930
    [Google Scholar]
  18. Kojima S., Asai Y., Atsumi T., Kawagashi I., Homma M. 1999b; Na+-driven flagellar motor resistant to phenamil, an amiloride analog, caused by mutations in putative channel components. J Mol Biol 285:1537–1547 [CrossRef]
    [Google Scholar]
  19. Larsen J. L., Mellergaard S. 1981; Microbiological and hygienic problems in marine aquaculture: furunculosis and vibriosis in rainbow trout (Salmo gairdneri. L.). Bull Eur Assoc Fish Pathol 1:29–31
    [Google Scholar]
  20. Larsen J. L., Pedersen K., Dalsgaard I. 1994; Vibrio anguillarum serovars associated with vibriosis in fish. J Fish Dis 17:259–267 [CrossRef]
    [Google Scholar]
  21. Larsen M. H., Larsen J. L., Olsen J. E. 2001; Chemotaxis of Vibrio anguillarum to fish mucus: role of the origin of the fish mucus, the fish species and the serogroup of the pathogen. FEMS Microbiol Ecol 38:77–80 [CrossRef]
    [Google Scholar]
  22. Maeda K., Imae Y., Shioi J. I., Oosawa F. 1976; Effect of temperature on motility and chemotaxis of Escherichia coli. J Bacteriol 127:1039–1046
    [Google Scholar]
  23. Magarinos B., Romalde J. L., Barja J. L., Toranzo A. E. 1994; Evidence of a dormant but infective state of the fish pathogen Pasteurella piscicida in seawater and sediment. Appl Environ Microbiol 60:180–186
    [Google Scholar]
  24. Malmcrona-Friberg K., Goodman A., Kjelleberg S. 1990; Chemotactic responses of marine Vibrio sp. strain S14 (CCUG 15956) to low-molecular-weight substances under starvation and recovery conditions. Appl Environ Microbiol 56:3699–3704
    [Google Scholar]
  25. McCarter L. 2001; Polar flagellar motility of the Vibrionaeceae. Microbiol Mol Biol Rev 65:445–462 [CrossRef]
    [Google Scholar]
  26. McGee K., Hörstedt P., Milton D. L. 1996; Identification and characterization of additional flagellin genes from Vibrio anguillarum. J Bacteriol 178:5188–5198
    [Google Scholar]
  27. Miller J. B., Koshland D. E. 1977; Membrane fluidity and chemotaxis: effects of temperature and membrane lipid composition on the swimming behavior of Salmonella typhimurium and Escherichia coli. J Mol Biol 111:183–201 [CrossRef]
    [Google Scholar]
  28. Milton D. L., O'Toole R., Hörstedt P., Wolf-Watz H. 1996; Flagellin A is essential for the virulence of Vibrio anguillarum. J Bacteriol 178:1310–1319
    [Google Scholar]
  29. Nelson D. R., Sadlowski Y., Eguchi M., Kjelleberg S. 1997; The starvation-stress response of Vibrio (Listonella)anguillarum. Microbiology 143:2305–2312 [CrossRef]
    [Google Scholar]
  30. Norqvist A., Hagstrom A., Wolf-Watz H. 1989; Protection of rainbow trout against vibriosis and furunculosis by the use of attenuated strains of Vibrio anguillarum. Appl Environ Microbiol 55:1400–1405
    [Google Scholar]
  31. Nyström T., Flardh K., Kjelleberg S. 1990; Responses to multiple-nutrient starvation in marine Vibrio sp. strain CCUG 15956. J Bacteriol 172:7085–7097
    [Google Scholar]
  32. Ormonde P., Hörstedt P., O'Toole R., Milton D. L. 2000; Role of motility in adherence to and invasion of a fish cell line by Vibrio anguillarum. J Bacteriol 182:2326–2328 [CrossRef]
    [Google Scholar]
  33. Östling J., Holmquist L., Flärdh K., Svenblad B., Jouper-Jaan Å., Kjelleberg S. 1993; Starvation and recovery of Vibrio. In Starvation in BacteriaEdited by Kjelleberg S. New York: Plenum;
    [Google Scholar]
  34. O'Toole R., Milton D. L., Wolf-Watz H. 1996; Chemotactic motility is required for invasion of the host by the fish pathogen Vibrio anguillarum. Mol Microbiol 19:625–637 [CrossRef]
    [Google Scholar]
  35. O'Toole R., Lundberg S., Fredriksson S. A., Jansson A., Nilsson B., Wolf-Watz H. 1999; The chemotactic response of Vibrio anguillarum to fish intestinal mucus is mediated by a combination of multiple mucus components. J Bacteriol 181:4308–4317
    [Google Scholar]
  36. Padan E., Krulwich T. A. 2000; Sodium stress. In Bacterial Stress Responses pp. 117–130Edited by Storz G., Hengge-Aronis R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  37. Rahman M. H., Kawai K., Kusuda R. 1997; Virulence of starved Aeromonas hydrophila to cyprinid fish. Fish Pathol 32:163–168 [CrossRef]
    [Google Scholar]
  38. Reed L. J., Muench H. 1938; A simple method of estimating fifty percent endpoints. Am J Hyg 27:493–497
    [Google Scholar]
  39. Smigielski A. J., Wallace B. J., Marshall K. C. 1989; Changes in membrane functions during short-term starvation of Vibrio fluvialis strain NCTC 11328. Arch Microbiol 151:336–347 [CrossRef]
    [Google Scholar]
  40. Spector M. P. 1998; The starvation-stress response (SSR) of Salmonella. Adv Microb Physiol 40:233–279
    [Google Scholar]
  41. Thar R., Blackburn N., Kühl M. 2000; A new system for three-dimensional tracking of motile microorganisms. Appl Environ Microbiol 66:2238–2242 [CrossRef]
    [Google Scholar]
  42. Weast R. C., Astle M. J. 1983; Table F40. In Handbook of Chemistry and Physics, 63rd edn. Boca Raton, FL: CRC Press;
    [Google Scholar]
  43. Wood J. M. 1999; Osmosensing by bacteria: signals and membrane-based sensors. Microbiol Mol Biol Rev 63:230–262
    [Google Scholar]
  44. Yildiz F. H., Schoolnik G. K. 1998; Role of rpoS in stress survival and virulence of Vibrio cholerae. J Bacteriol 180:773–784
    [Google Scholar]
  45. Yoshida S., Sugiyama S., Hojo Y., Tokuda H., Imae Y. 1990; Intracellular Na+ kinetically interferes with the rotation of the Na+-driven flagellar motors ofVibrio alginolyticus. J Biol Chem 265:20346–20350
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26379-0
Loading
/content/journal/micro/10.1099/mic.0.26379-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error