1887

Abstract

Mid2p is a plasma membrane protein that functions in as a sensor of cell wall stress, activating the cell integrity pathway via the small GTPase Rho1p during exposure to mating pheromone, calcofluor white, and heat. To examine Mid2p signalling, a global synthetic interaction analysis of a mutant was performed; this identified 11 interacting genes. These include and , upstream elements in cell integrity pathway signalling, and and , required for 1,3--glucan synthesis. These synthetic interactions indicate that the Wsc1p sensor acts through Rom2p to activate the Fks1p glucan synthase in a Mid2p-independent way. To further explore Mid2p signalling a two-hybrid screen was done using the cytoplasmic tail of Mid2p; this identified (), encoding a 12 kDa peripheral membrane protein that localizes to the plasma membrane. Disruption of leads to resistance to calcofluor white and to a Mid2p-dependent constitutive phosphorylation of Mpk1p, supporting a role for Zeo1p in the cell integrity pathway. Consistent with this, -deficient cells suppress the growth defect of mutants in the Rho1p GDP–GTP exchange factor Rom2p, while exacerbating the growth defect of Δ mutants at 37 °C. In contrast, Δ mutants have opposing effects to Δ mutants, being synthetically lethal with Δ, and suppressing an 18 °C growth defect of Δ, while overexpression of rescues a Δ 37 °C growth defect. Thus, and appear to play reciprocal roles in the modulation of the yeast cell integrity pathway.

Keyword(s): HA, haemagglutinin
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26471-0
2003-09-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/149/9/mic1492487.html?itemId=/content/journal/micro/10.1099/mic.0.26471-0&mimeType=html&fmt=ahah

References

  1. Baetz K., Moffat J., Haynes J., Chang M., Andrews B. 2001; Transcriptional coregulation of the cell integrity mitogen-activated protein kinase Slt2 and the cell cycle regulator Swi4. Mol Cell Biol 21:6515–6528
    [Google Scholar]
  2. Brachmann C. B., Davies A., Cost G. J., Caputo E., Li J., Hieter P., Boeke J. D. 1998; Designer deletion strains derived from Saccharomyces cerevisiae S288C: a useful set of strains and plasmids for PCR-mediated gene disruption and other applications. Yeast 14:115–132
    [Google Scholar]
  3. Buehrer B. M., Errede B. 1997; Coordination of the mating and cell integrity mitogen activated protein kinase pathways in Saccharomyces cerevisiae . Mol Cell Biol 17:6517–6525
    [Google Scholar]
  4. Bulawa C. E., Slater M., Cabib E., Au-Young J., Sburlati A., Adair W. L., Robbins P. 1986; The S. cerevisiae structural gene for chitin synthase is not required for chitin synthesis in vivo . Cell 46:213–225
    [Google Scholar]
  5. Calmels T., Parriche M., Burand H., Tiraby G. 1991; High efficiency transformation of Tolypocladium geodes conidiospores to phleomycin resistance. Curr Genet 20:309–314
    [Google Scholar]
  6. Costigan C., Gehrung S., Snyder M. 1992; A synthetic lethal screen identifies SLK1, a novel protein kinase homologue implicated in yeast cell morphogenesis and cell growth. Mol Cell Biol 12:1162–1178
    [Google Scholar]
  7. Douglas C. M., Foor F., Marrinan J. A. 11 other authors 1994; The Saccharomyces cerevisiae FKS1 ( ETG1 ) gene encodes an integral membrane protein which is a subunit of 1,3-beta-d-glucan synthase. Proc Natl Acad Sci U S A 91:12907–12911
    [Google Scholar]
  8. Drocourt D., Calmels T. P. G., Reynes J. P., Baron M., Tiraby G. 1990; Cassettes of the Streptoalloteichus hindustanus ble gene for transformation of lower and higher eukaryotes to phleomycin resistance. Nucleic Acids Res 18:4009
    [Google Scholar]
  9. Elorza M. V., Rico H., Sentandreu R. 1983; Calcofluor white alters the assembly of chitin fibrils in Saccharomyces cerevisae . Antimicrob Agents Chemother 39:200–207
    [Google Scholar]
  10. Evangelista M., Blundell K., Longtine M. S., Chow C. J., Adames N., Pringle J. R., Peter M., Boone C. 1997; Bni1p, a yeast formin linking Cdc42p and the actin cytoskeleton during polarized morphogenesis. Science 276:118–122
    [Google Scholar]
  11. Garret-Engele P., Moilanen B., Cyert M. S. 1995; Calcineurin, the Ca2+/calmodulin-dependent protein phosphatase, is essential in yeast mutants with cell integity defects and in mutants that lack a functional H+-ATPase. Mol Cell Biol 15:4103–4114
    [Google Scholar]
  12. Gasch A. P., Spellman P. T., Kao C. M., Carmel-Harel O., Eisen M. B., Storz G., Botstein D., Brown P. O. 2000; Genomic expression programs in the response of yeast cells to environmental changes. Mol Biol Cell 11:4241–4257
    [Google Scholar]
  13. Gray J. V., Ogas J. P., Kamada Y., Stone M., Levin D. E., Herskowitz I. 1997; A role for the Pkc1 MAP kinase pathway of Saccharomyces cerevisiae in bud emergence and identification of a putative upstream regulator. EMBO J 16:4924–4937
    [Google Scholar]
  14. Huxley C., Green E. D., Dunham I. 1990; Rapid assessment of S. cerevisiae mating type by PCR. Trends Genet 6:236
    [Google Scholar]
  15. Igual J. C., Johnson A. L., Johnston L. H. 1996; Coordinated regulation of gene expression by the cell cycle transcription factor SWI4 and the protein kinase C MAP kinase pathway for yeast cell integrity. EMBO J 15:5001–5013
    [Google Scholar]
  16. Irie K., Takase M., Lee K. S., Levin D. E., Araki H., Matsumoto K., Oshima Y. 1993; MKK1 and MKK2 , which encode Saccharomyces cerevisiae mitogen activated protein kinase-kinase homologs, function in the pathway mediated by protein kinase C. Mol Cell Biol 13:3076–3083
    [Google Scholar]
  17. Jacoby J. J., Nilius S. M., Heinisch J. J. 1998; A screen for upstream components of the yeast protein kinase C signal transduction pathway identifies the product of the SLG1 gene. Mol Gen Genet 258:148–155
    [Google Scholar]
  18. Jungmann J., Rayner J. C., Munro S. 1999; The Saccharomyces cerevisiae protein Mnn10p/Bed1p is a subunit of the Golgi mannosyltransferase complex. J Biol Chem 274:6579–6585
    [Google Scholar]
  19. Kamada Y., Qadota H., Python C. P., Anraku Y., Ohya Y., Levin D. E. 1996; Activation of yeast protein kinase C by Rho1 GTPase. J Biol Chem 271:9193–9196
    [Google Scholar]
  20. Ketela T., Green R., Bussey H. 1999; Saccharomyces cerevisiae Mid2p is a potential cell wall stress sensor and upstream activator of the PKC1–MPK1 cell integrity pathway. J Bacteriol 181:3330–3340
    [Google Scholar]
  21. Kunkel T. A., Roberts J. D., Zakour R. A. 1987; Rapid and efficient site specific mutagenesis without phenotypic selection. Methods Enzymol 154:367–382
    [Google Scholar]
  22. Lee K. S., Levin D. E. 1992; Dominant mutations in a gene encoding a putative protein kinase ( BCK1 ) bypass the requirement for a Saccharomyces cerevisiae protein kinase C homologue. Mol Cell Biol 12:172–182
    [Google Scholar]
  23. Lee K. S., Irie K., Gotoh Y., Watanabe Y., Araki H., Nishida E., Matsumoto K., Levin D. E. 1993; A yeast mitogen-activated protein kinase homolog (Mpk1p) mediates signalling by protein kinase C. Mol Cell Biol 13:3067–3075
    [Google Scholar]
  24. Levin D. E., Bartlett-Heubusch E. 1992; Mutations in the S. cerevisiae PKC1 gene display a cell cycle-specific osmotic stability defect. J Cell Biol 116:1221–1229
    [Google Scholar]
  25. Levin D. E., Bowers B., Chen C. Y., Kamada Y., Watanabe M. 1993; Dissecting the protein kinase C/MAP kinase signaling pathway of Saccharomyces cerevisiae . Cell Mol Biol Res 40:229–239
    [Google Scholar]
  26. Luyten K., Albertyn J., Skibbe W. F., Prior B. A., Ramos J., Thevelein J. M., Hohmann S. 1995; Fps1, a yeast member of the MIP family of channel proteins, is a facilitator for glycerol uptake and efflux and is inactive under osmotic stress. EMBO J 14:1360–1371
    [Google Scholar]
  27. Manning B., Padmanabha R., Snyder M. 1997; The Rho-GEF Rom2p localizes to sites of polarized cell growth and participates in cytoskeletal functions in Saccharomyces cerevisiae . Mol Biol Cell 8:1829–1844
    [Google Scholar]
  28. Martin H., Arroyo J., Sanchez M., Molina M., Nombela C. 1993; Activity of the yeast MAP kinase homologue Slt2 is critically required for cell integrity at 37 degrees C. Mol Gen Genet 241:177–184
    [Google Scholar]
  29. Martin H., Rodriguez-Pachon J. M., Ruiz C., Nombela C., Molina M. 2000; Regulatory mechanisms for modulation of signaling through the cell integrity Slt2-mediated pathway in Saccharomyces cerevisiae . J Biol Chem 275:1511–1519
    [Google Scholar]
  30. Martin-Yken H., Dagkessamanskaia A., Talibi D., Francois J. 2002; KNR4 is a member of the PKC1 signalling pathway and genetically interacts with BCK2 , a gene involved in cell cycle progression in Saccharomyces cerevisiae . Curr Genet 41:323–332
    [Google Scholar]
  31. Mrsa V., Seidl T., Gentzsch M., Tanner W. 1997; Specific labeling of cell wall proteins by biotinylation identification of four covalently linked O -mannosylated proteins of Saccharomyces cerevisiae . Yeast 13:1145–1154
    [Google Scholar]
  32. Nierras C. R., Warner J. R. 1999; Protein kinase C enables the regulatory circuit that connects membrane synthesis to ribosome synthesis in Saccharomyces cerevisiae . J Biol Chem 274:13235–13241
    [Google Scholar]
  33. Nonaka H., Tanaka K., Hirano H., Fujiara T., Kohno H., Umikawa M., Mino A., Takai Y. 1995; A downstream target of the RHO1 small GTP binding protein is PKC1, a homologue of protein kinase C, which leads to activation of the MAP kinase cascade in Saccharomyces cerevisiae . EMBO J 14:5931–5938
    [Google Scholar]
  34. Ono T., Suzuki T., Anraku Y., Iida H. 1994; The MID2 gene encodes a putative integral membrane protein with a Ca2+ binding domain and shows mating pheromone stimulated expression in Saccharomyces cerevisiae . Gene 151:203–208
    [Google Scholar]
  35. Ozaki K., Tanaka K., Imamura H., Hihara T., Kameyama T., Nonaka H., Hirano H., Matsuura Y., Takai Y. 1996; Rom1p and Rom2p are GDP/GTP exchange proteins (GEFs) for the Rho1p small GTP binding protein in Saccharomyces cerevisiae . EMBO J 15:2196–2207
    [Google Scholar]
  36. Peterson J., Zheng Y., Bender L., Myers A., Cerione R., Bender A. 1994; Interactions between the bud emergence proteins Bem1p and Bem2p and Rho-type GTPases in yeast. J Cell Biol 127:1395–1406
    [Google Scholar]
  37. Philip B., Levin D. 2001; Wsc1 and Mid2 are cell surface sensors for cell wall integrity signaling that act through Rom2, a guanine nucleotide exchange factor for Rho1. Mol Cell Biol 21:271–280
    [Google Scholar]
  38. Posas F., Chambers J. R., Heyman J. A., Hoeffler J. P., de Nadal E., Arino J. 2000; The transcriptional response of yeast to saline stress. J Biol Chem 275:17249–17255
    [Google Scholar]
  39. Qadota H., Python C. P., Inoue S. B., Arisawa M., Anraku Y., Zheng Y., Watanabe T., Levin D. E., Ohya Y. 1996; Identification of the yeast Rho1p GTPase as a regulatory subunit of the 1,3-beta-glucan synthase. Science 272:279–281
    [Google Scholar]
  40. Rajavel M., Phillip B., Buehrer B. M., Errede B., Levin D. E. 1999; Mid2 is a putative sensor for cell integrity signaling in Saccharomyces cerevisiae . Mol Cell Biol 19:3969–3976
    [Google Scholar]
  41. Schmidt A., Bickle M., Beck T., Hall M. N. 1997; The yeast phosphatidylinositol kinase homologue TOR2 activates RHO1 and RHO2 via the exchange factor ROM2. Cell 88:531–542
    [Google Scholar]
  42. Sekiya-Kawasaki M., Abe M., Saka A., Watanabe D., Kono K., Minemura-Asakawa M., Ishihara S., Watanabe T., Ohya Y. 2002; Dissection of upstream regulatory components of the Rho1p effector, 1,3- β -glucan synthase, in Saccharomyces cerevisiae . Genetics 162:663–676
    [Google Scholar]
  43. Tamas M. J., Luyten K., Sutherland F. C. 10 other authors 1999; Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104
    [Google Scholar]
  44. Tong A. H. Y., Evangelista M., Parsons A. B. 10 other authors 2001; Systematic genetic analysis with ordered arrays of yeast deletion mutants. Science 294:2364–2368
    [Google Scholar]
  45. Verna J., Lodder A., Lee K., Vagts A., Ballester R. 1997; A family of genes required for maintenance of cell wall integrity and for the stress response in Saccharomyces cerevisiae . Proc Natl Acad Sci U S A 94:13804–13809
    [Google Scholar]
  46. Winzeler E. A., Shoemaker D. D., Astromoff A. 49 other authors 1999; Functional characterization of the S. cerevisiae genome by gene deletion and parallel analysis. Science 285:901–906
    [Google Scholar]
  47. Zarzov P., Mazzoni C., Mann C. 1996; The SLT2(MPK1) Map kinase is activated during periods of polarized growth in yeast. EMBO J 83:93–91
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26471-0
Loading
/content/journal/micro/10.1099/mic.0.26471-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error