1887

Abstract

Two-component systems are major regulatory systems for bacterial adaptation to environmental changes. During the infectious cycle of , adaptation to an intracellular environment is critical for multiplication and survival of the micro-organism within the host. The gene, encoding the regulator of the two-component system PrrA–PrrB, has been shown to be induced upon macrophage phagocytosis and to be transiently required for the early stages of macrophage infection. In order to study the mechanisms of regulation of the PrrA–PrrB two-component system, PrrA and the cytoplasmic part of the PrrB histidine kinase were produced and purified as hexahistidine-tagged recombinant proteins. Electrophoretic mobility shift assays indicated that PrrA specifically binds to the promoter of its own operon, with increased affinity upon phosphorylation. Moreover, induction of fluorescence was observed after phagocytosis of a wild-type strain containing the reporter gene under the control of the promoter, while this induction was not seen in a / mutant strain containing the same construct. These results indicate that the early intracellular induction of depends on the autoregulation of this two-component system.

Keyword(s): His6, hexahistidine
Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26516-0
2004-01-01
2024-04-20
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/1/mic1500241.html?itemId=/content/journal/micro/10.1099/mic.0.26516-0&mimeType=html&fmt=ahah

References

  1. Bajaj V., Lucas R. L., Hwang C., Lee C. A. 1996; Co-ordinate regulation of Salmonella typhimurium invasion genes by environmental and regulatory factors is mediated by control of hilA expression. Mol Microbiol 22:703–714 [CrossRef]
    [Google Scholar]
  2. Boon C., Dick T. 2002; Mycobacterium bovis BCG response regulator essential for hypoxic dormancy. J Bacteriol 184:6760–6767 [CrossRef]
    [Google Scholar]
  3. Chitale S., Ehrt S., Kawamura I., Fujimura T., Shimono N., Anand N., Lu S., Cohen-Gould L., Riley L. W. 2001; Recombinant Mycobacterium tuberculosis protein associated with mammalian cell entry. Cell Microbiol 3:247–254 [CrossRef]
    [Google Scholar]
  4. Cole S. T., Brosch R., Parkhill J. & 39 other authors; 1998; Deciphering the biology of Mycobacterium tuberculosis from the complete genome sequence. Nature 393:537–544 [CrossRef]
    [Google Scholar]
  5. Dasgupta N., Kapur V., Singh K. K., Das T. K., Sachdeva S., Jyothisri K., Tyagi J. S. 2000; Characterization of a two-component system, devRdevS, of Mycobacterium tuberculosis. Tuber Lung Dis 80:141–159 [CrossRef]
    [Google Scholar]
  6. Ewann F., Jackson M., Pethe K., Cooper A., Mielcarek N., Ensergueix D., Gicquel B., Locht C., Supply P. 2002; Transient requirement of the PrrA-PrrB two-component system for early intracellular multiplication of Mycobacterium tuberculosis. Infect Immun 70:2256–2263 [CrossRef]
    [Google Scholar]
  7. Forst S., Delgado J., Inouye M. 1989; Phosphorylation of OmpR by the osmosensor EnvZ modulates expression of the ompF and ompC genes in Escherichia coli. Proc Natl Acad Sci U S A 86:6052–6056 [CrossRef]
    [Google Scholar]
  8. Graham J. E., Clark-Curtiss J. E. 1999; Identification of Mycobacterium tuberculosis RNAs synthesized in response to phagocytosis by human macrophages by selective capture of transcribed sequences (SCOTS. Proc Natl Acad Sci U S A 96:11554–11559 [CrossRef]
    [Google Scholar]
  9. Haydel S. E., Dunlap N. E., Benjamin W. H. Jr 1999; In vitro evidence of two-component system phosphorylation between the Mycobacterium tuberculosis TrcR/TrcS proteins. Microb Pathog 26:195–206 [CrossRef]
    [Google Scholar]
  10. Haydel S. E., Benjamin W. H. Jr, Dunlap N. E., Clark-Curtiss J. E. 2002; Expression, autoregulation, and DNA binding properties of the Mycobacterium tuberculosis. TrcR response regulator. J Bacteriol 184:2192–2203 [CrossRef]
    [Google Scholar]
  11. Himpens S., Locht C., Supply P. 2000; Molecular characterization of the mycobacterial SenX3–RegX3 two-component system: evidence for autoregulation. Microbiology 146:3091–3098
    [Google Scholar]
  12. Hoch J. A. 2000; Two-component and phosphorelay signal transduction. Curr Opin Microbiol 3:165–170 [CrossRef]
    [Google Scholar]
  13. Jackson M., Raynaud C., Laneelle M. A., Guilhot C., Laurent-Winter C., Ensergueix D., Gicquel B., Daffe M. 1999; Inactivation of the antigen 85C gene profoundly affects the mycolate content and alters the permeability of the Mycobacterium tuberculosis cell envelope. Mol Microbiol 31:1573–1587 [CrossRef]
    [Google Scholar]
  14. Kolattukudy P. E., Fernandes N. D., Azad A. K., Fitzmaurice A. M., Sirakova T. D. 1997; Biochemistry and molecular genetics of cell-wall lipid biosynthesis in mycobacteria. Mol Microbiol 24:263–270 [CrossRef]
    [Google Scholar]
  15. Lucas R. L., Lostroh C. P., DiRusso C. C., Spector M. P., Wanner B. L., Lee C. A. 2000; Multiple factors independently regulate hilA and invasion gene expression in Salmonella enterica serovar typhimurium. . J Bacteriol 182:1872–1882 [CrossRef]
    [Google Scholar]
  16. Manganelli R., Dubnau E., Tyagi S., Kramer F. R., Smith I. 1999; Differential expression of 10 sigma factor genes in Mycobacterium tuberculosis. Mol Microbiol 31:715–724 [CrossRef]
    [Google Scholar]
  17. McKinney J. D., Honer zu Bentrup K., Munoz-Elias E. J.7 other authors 2000; Persistence of Mycobacterium tuberculosis in macrophages and mice requires the glyoxylate shunt enzyme isocitrate lyase. Nature 406:735–738 [CrossRef]
    [Google Scholar]
  18. Park H. D., Guinn K. M., Harrell M. I., Liao R., Voskuil M. I., Tompa M., Schoolnik G. K., Sherman D. R. 2003; Rv3133c/dosR is a transcription factor that mediates the hypoxic response of Mycobacterium tuberculosis. Mol Microbiol 48:833–843 [CrossRef]
    [Google Scholar]
  19. Perez E., Samper S., Bordas Y., Guilhot C., Gicquel B., Martin C. 2001; An essential role for phoP in Mycobacterium tuberculosis virulence. . Mol Microbiol 41:179–187 [CrossRef]
    [Google Scholar]
  20. Prentki P., Krisch H. M. 1984; In vitro insertional mutagenesis with a selectable DNA fragment. Gene 29:303–313 [CrossRef]
    [Google Scholar]
  21. Sherman D. R., Voskuil M., Schnappinger D., Liao R., Harrell M. I., Schoolnik G. K. 2001; Regulation of the Mycobacterium tuberculosis hypoxic response gene encoding alpha-crystallin. Proc Natl Acad Sci U S A 98:7534–7539 [CrossRef]
    [Google Scholar]
  22. Stock A. M., Robinson V. L., Goudreau P. N. 2000; Two-component signal transduction. Annu Rev Biochem 69:183–215 [CrossRef]
    [Google Scholar]
  23. Supply P., Magdalena J., Himpens S., Locht C. 1997; Identification of novel intergenic repetitive units in a mycobacterial two-component system operon. Mol Microbiol 26:991–1003 [CrossRef]
    [Google Scholar]
  24. Triccas J. A., Berthet F. X., Pelicic V., Gicquel B. 1999; Use of fluorescence induction and sucrose counterselection to identify Mycobacterium tuberculosis genes expressed within host cells. Microbiology 145:2923–2930
    [Google Scholar]
  25. Via L. E., Curcic R., Mudd M. H., Dhandayuthapani S., Ulmer R. J., Deretic V. 1996; Elements of signal transduction in Mycobacterium tuberculosis: in vitro phosphorylation and in vivo expression of the response regulator MtrA. J Bacteriol 178:3314–3321
    [Google Scholar]
  26. Zahrt T. C., Deretic V. 2000; An essential two-component signal transduction system in Mycobacterium tuberculosis. J Bacteriol 182:3832–3838 [CrossRef]
    [Google Scholar]
  27. Zahrt T. C., Deretic V. 2001; Mycobacterium tuberculosis signal transduction system required for persistent infections. Proc Natl Acad Sci U S A 98:12706–12711 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26516-0
Loading
/content/journal/micro/10.1099/mic.0.26516-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error