1887

Abstract

Polyol accumulation and metabolism were examined in cultured on whole wheat grains or on wheat dough as a model for solid-state culture. In solid-state fermentation (SSF), water activity ( ) is typically low resulting in osmotic stress. In addition to a high level of mannitol, which is always present in the cells, accumulated high concentrations of glycerol, erythritol and arabitol at relatively low (0·96–0·97) in SSF. Accumulation of such a mixture of polyols is rather unusual and might be typical for SSF. mycelium accumulating various polyols at low contained at least four distinct polyol dehydrogenases with highest activities toward glycerol, erythritol, -arabitol and mannitol. NADP-dependent glycerol dehydrogenase activity correlated very well with glycerol accumulation. A similar correlation was observed for erythritol and NADP–erythritol dehydrogenase suggesting that NADP-dependent glycerol and erythritol dehydrogenases are involved in biosynthesis of glycerol and erythritol, respectively, and that these enzymes are induced by osmotic stress.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26723-0
2004-04-01
2024-04-18
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/4/mic1501095.html?itemId=/content/journal/micro/10.1099/mic.0.26723-0&mimeType=html&fmt=ahah

References

  1. Albertyn J., Hohmann S., Thevelein J. M., Prior B. A. 1994; GPD1, which encodes glycerol-3-phosphate dehydrogenase, is essential for growth under osmotic stress in Saccharomyces cerevisiae, and its expression is regulated by the high-osmolarity glycerol response pathway. Mol Cell Biol 14:4135–4144
    [Google Scholar]
  2. Beever R. E., Laracy E. P. 1986; Osmotic adjustment in the filamentous fungus Aspergillus nidulans. J Bacteriol 168:1358–1365
    [Google Scholar]
  3. Blakeley E. R., Spencer J. F. T. 1962; Studies on the formation of d-arabitol by osmophilic yeasts. Can J Biochem Physiol 40:1737–1748 [CrossRef]
    [Google Scholar]
  4. Clark A. J., Blissett K. J., Oliver R. P. 2003; Investigating the role of polyols in Cladosporium fulvum during growth under hyper-osmotic stress in planta. Planta 216:614–619
    [Google Scholar]
  5. de Vries R. P., Flitter S. J., van de Vondervoort P. J. I., Chaveroche M.-K., Fontaine T., Fillinger S., Ruijter G. J. G., d'Enfert C., Visser J. 2003; Glycerol dehydrogenase, encoded by gldB is essential for osmotolerance in Aspergillus nidulans. Mol Microbiol 49:131–141 [CrossRef]
    [Google Scholar]
  6. Dixon K. P., Xu J.-R., Smirnoff N., Talbot N. J. 1999; Independent signalling pathways regulate cellular turgor during hyperosmotic stress and appressorium-mediated plant infection by Magnaporthe grisea. Plant Cell 11:2045–2058 [CrossRef]
    [Google Scholar]
  7. El-Kady I. A., Moubasher M. H., Mostafa M. E. 1994; Glycerol production by two filamentous fungi grown at different ionic and nonionic osmotics and cheese whey. Folia Microbiol 39:203–207 [CrossRef]
    [Google Scholar]
  8. Fillinger S., Ruijter G., Tamàs M., Visser J., Thevelein J., d'Enfert C. 2001; Molecular and physiological characterization of the NAD-dependent glycerol 3-phosphate dehydrogenase in the filamentous fungus Aspergillus nidulans. Mol Microbiol 39:145–157 [CrossRef]
    [Google Scholar]
  9. Gutierrez-Rojas M., Cordova J., Auria R., Revah S., Favela-Torres E. 1995; Citric acid and polyols production by Aspergillus niger at high glucose concentration in solid-state fermentation of inert support. Biotechnol Lett 17:219–224 [CrossRef]
    [Google Scholar]
  10. Horikoshi K., Iida S., Ikeda Y. 1965; Mannitol and mannitol dehydrogenase in conidia of Aspergillus oryzae. J Bacteriol 89:326–330
    [Google Scholar]
  11. Ishida H., Hata Y., Ichikawa E., Kawato A., Suginami K., Imayasu S. 1998; Regulation of the glucoamylase-encoding gene (glaB), expressed in solid-state culture (koji) of Aspergillus oryzae. J Ferment Bioeng 86:301–307 [CrossRef]
    [Google Scholar]
  12. Kelavkar U. P., Chhatpar H. S. 1993; Polyol concentrations in Aspergillus repens grown under salt stress. World J Microbiol Biotechnol 9:579–582 [CrossRef]
    [Google Scholar]
  13. Low D. A., Jennings D. H. 1975; Carbohydrate metabolism in the fungus Dendryphiella salina. V. The pattern of label in arabitol and polysaccharide after growth in the presence of specifically labeled carbon sources. New Phytol 74:67–79 [CrossRef]
    [Google Scholar]
  14. Melchers W. J. G., Verweij P. E., van den Hurk P., van Belkum A., De Pauw B. E., Hoogkamp-Korstanje A. A., Meis J. F. G. M. 1994; General primer-mediated PCR for detection of Aspergillus species. J Clin Microbiol 32:1710–1717
    [Google Scholar]
  15. Mellon J. E., Dowd M. K., Cotty P. J. 2002; Time course study of substrate utilization by Aspergillus flavus in medium simulating corn (Zea mays) kernels. J Agric Food Chem 50:648–652 [CrossRef]
    [Google Scholar]
  16. Nagel F.-J. J. I., Tramper J., Bakker M. S. N., Rinzema A. 2001; Model for on-line moisture-content control during solid-state fermentation. Biotechnol Bioeng 72:231–243 [CrossRef]
    [Google Scholar]
  17. Norbeck J., Påhlman A. K., Akhtar N., Blomberg A., Adler L. 1996; Purification and characterization of two isoenzymes of dl-glycerol-3-phosphatase from Saccharomyces cerevisiae. Identification of the corresponding GPP1 and GPP2 genes and evidence for osmotic regulation of Gpp2p expression by the osmosensing mitogen-activated protein kinase signal transduction pathway. J Biol Chem 271:13875–13881 [CrossRef]
    [Google Scholar]
  18. Pandey A., Ashakumary L., Selvakumar P., Vijayalakshmi K. S. 1994; Influence of water activity on growth and activity of Aspergillus niger for glycoamylase production in solid-state fermentation. World J Microbiol Biotechnol 10:485–486 [CrossRef]
    [Google Scholar]
  19. Pandey A., Soccol C. R., Mitchell D. 2000; New developments in solid-state fermentation: I bioprocesses and products. Process Biochem 35:1153–1169 [CrossRef]
    [Google Scholar]
  20. Pascual S., Melgarejo P., Magan N. 2003; Water availability affects the growth, accumulation of compatible solutes and the viability of the biocontrol agent Epicoccum nigrum. Mycopathologia 156:93–100
    [Google Scholar]
  21. Ramos A. J., Magan N., Sanchis V. 1999; Osmotic and matric potential effects on growth, sclerotia and partitioning of polyols and sugars in colonies and spores of Aspergillus ochraceus. Mycol Res 103:141–147 [CrossRef]
    [Google Scholar]
  22. Redkar R. J., Locy R. D., Singh N. K. 1995; Biosynthetic pathways of glycerol accumulation under salt stress in Aspergillus nidulans. Exp Mycol 19:241–246 [CrossRef]
    [Google Scholar]
  23. Robinson T., Singh D., Nigam P. 2001; Solid-state fermentation: a promising microbial technology for secondary metabolite production. Appl Microbiol Biotechnol 55:284–289 [CrossRef]
    [Google Scholar]
  24. Ruijter G. J. G., Bax M., Patel H., Flitter S. J., van de Vondervoort P. J. I., de Vries R. P., vanKuyk P. A., Visser J. 2003; Mannitol is required for stress tolerance in Aspergillus niger conidiospores. Eukaryot Cell 2:690–698 [CrossRef]
    [Google Scholar]
  25. Tamás M. J., Luyten K., Sutherland F. C. W.10 other authors 1999; Fps1p controls the accumulation and release of the compatible solute glycerol in yeast osmoregulation. Mol Microbiol 31:1087–1104 [CrossRef]
    [Google Scholar]
  26. Tokuoka K., Ishizuka H., Wako K., Taniguchi K. 1992; Comparison of three forms of erythrose reductase from an Aureobasidium sp. mutant. J Gen Appl Microbiol 38:145–155 [CrossRef]
    [Google Scholar]
  27. Veiga-da-Cunha M., Santos H., Van Schaftingen E. 1993; Pathway and regulation of erythritol formation in Leuconostoc oenos. J Bacteriol 175:3941–3948
    [Google Scholar]
  28. Witteveen C. F. B., Visser J. 1995; Polyol pools in Aspergillus niger. FEMS Microbiol Lett 134:57–62 [CrossRef]
    [Google Scholar]
  29. Witteveen C. F. B., Weber F., Busink R., Visser J. 1994; Isolation and characterization of two xylitol dehydrogenases from Aspergillus niger. Microbiology 140:1679–1685 [CrossRef]
    [Google Scholar]
  30. Wong B., Murray J. S., Castellanos M., Croen K. D. 1993; d-Arabitol metabolism in Candida albicans: studies of the biosynthetic pathway and the gene that encodes NAD-dependent d-arabitol dehydrogenase. J Bacteriol 175:6314–6320
    [Google Scholar]
  31. Wong B., Leeson S., Grindle S., Magee B., Brooks E., Magee P. T. 1995; d-Arabitol metabolism in Candida albicans: construction and analysis of mutants lacking d-arabitol dehydrogenase. J Bacteriol 177:2971–2976
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26723-0
Loading
/content/journal/micro/10.1099/mic.0.26723-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error