1887

Abstract

Tn mutagenesis was used to generate an SPF94 mutant. Genetic analysis of this mutant revealed that a homologue of the gene, which controls cell shape in and , was inactivated. The cell-surface properties of the mutant were different from those of the parental strain. The mutant colonies were highly fluorescent when grown on plates containing Calcofluor White. Light and electron microscopy revealed that the mutant cells were round and had thicker capsules than the spiral parental strain. The mutants contained up to ten times more capsule protein than the parental strain, but lacked a 40 kDa protein that is abundant in the parental strain. The phenotype of the isolated mutant resembled that of the cyst-like differentiated forms of , suggesting that the homologue could be involved in differentiation.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26904-0
2004-07-01
2024-04-25
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502465.html?itemId=/content/journal/micro/10.1099/mic.0.26904-0&mimeType=html&fmt=ahah

References

  1. Abhayawardhane Y., Stewart G. C. 1995; Bacillus subtilis possesses a second determinant with extensive sequence similarity to the Escherichia coli mreB morphogene. J Bacteriol 177:765–773
    [Google Scholar]
  2. Altschul S. F., Gish W., Miller W., Myers E. W., Lipman D. J. 1990; Basic local alignment search tool. J Mol Biol 215:403–410 [CrossRef]
    [Google Scholar]
  3. Altschul S. F., Madden T. L., Zhang J., Zhang Z., Miller W., Lipman D. J, Schäffer A. 1997; Gapped blast and psi-blast: a new generation of protein database search programs. Nucleic Acids Res 25:3389–3402 [CrossRef]
    [Google Scholar]
  4. Arunakumari A., Lamm R. B., Neyra-Estens C. A. 1992; Changes in cell surface properties of Azospirilla in relation to cell pleomorphism and aggregation. Symbiosis 13:291–305
    [Google Scholar]
  5. Bani D., Barberio C., Bazzicalupo M., Favilli F., Gallori E., Polsinelli M. 1980; Isolation and characterization of glutamate synthase mutants of Azospirillum brasilense. J Gen Microbiol 119:239–244
    [Google Scholar]
  6. Bashan Y., Levanony H., Whitmoyer E. 1991; Root surface colonization of non-cereal crop plants by pleomorphic Azospirillum brasilense. Cd. J Gen Microbiol 137:187–196 [CrossRef]
    [Google Scholar]
  7. Bastarrachea F., Zanudio M., Rivas R. 1988; Non-encapsulated mutants of Azospirillum brasilense and Azospirillum lipoferum. Can J Microbiol 34:24–29 [CrossRef]
    [Google Scholar]
  8. Becking J. H. 1985; Pleomorphism in Azospirillum. In Azospirillum III: Genetics, Physiology, Ecology pp 243–263Edited by Klingmüller W. Berlin: Springer;
    [Google Scholar]
  9. Berg R. H., Vasil V., Vasil K. I. 1979; The biology of Azospirillum-sugar cane association: II Ultrastructure. Protoplasma 101:143–163 [CrossRef]
    [Google Scholar]
  10. Berg R. H., Tyler M. E., Novick N. J., Vasil V., Vasil I. K. 1980; Biology of Azospirillum-sugar cane association: enhancement of nitrogenase activity. Appl Environ Microbiol 39:642–649
    [Google Scholar]
  11. Bork P., Sander C., Valencia A. 1992; An ATPase domain common to prokaryotic cell cycle proteins, sugar kinases, actin, and Hsp70 heat shock proteins. Proc Natl Acad Sci U S A 89:7290–7294 [CrossRef]
    [Google Scholar]
  12. Boyer H. W., Roulland-Dussoix D. 1969; A complementation analysis of the restriction and modification of DNA in E. coli. J Mol Biol 41:459–472 [CrossRef]
    [Google Scholar]
  13. Burdman S., Jurkevitch E., Soria-Diaz M. E., Gil Serrano A. M., Okon Y. 2000; Extracellular polysaccharide composition of Azospirillum brasilense and its relation with cell aggregation. FEMS Microbiol 189:259–264 [CrossRef]
    [Google Scholar]
  14. Burdman S., Dulguerova G., Okon Y., Jurkevitch E. 2001; Purification of the major outer membrane protein of Azospirillum brasilense, its affinity to plant roots, and its involvement in cell aggregation. Mol Plant–Microbe Interact 14:555–561 [CrossRef]
    [Google Scholar]
  15. Burger A., Sichler K., Kelemen G., Buttner M., Wohllben W. 2000; Identification and characterization of the mreB gene region of Streptomyces coelicolor A3(2). Mol Gen Genet 263:1053–1060 [CrossRef]
    [Google Scholar]
  16. Castellanos T., Ascencio F., Bashan Y. 1997; Cell-surface hydrophobicity and cell-surface charge of Azospirillum spp. FEMS Microbiol Ecol 24:159–17 [CrossRef]
    [Google Scholar]
  17. Corpet F. 1988; Multiple sequence alignment with hierarchical clustering. Nucleic Acids Res 16:10881–10890 [CrossRef]
    [Google Scholar]
  18. Costa C. S., Anton D. N. 1993; Round-cell mutants of Salmonella typhimurium produced by transposition mutagenesis: lethality of rodA and mre mutations. Mol Gen Genet 236:387–394
    [Google Scholar]
  19. Del Gallo M., Haegi A. 1990; Characterization and quantification of exocellular polysaccharides in Azospirillum brasilense and Azospirillum lipoferum. Symbiosis 9:155–161
    [Google Scholar]
  20. Del Gallo M., Negi M., Neyra C. A. 1989; Calcofluor and lectin binding exocellular polysaccharides of Azospirillum brasilense and A. lipoferum. J Bacteriol 171:3504–3510
    [Google Scholar]
  21. De Troch P., Philip-Hollingsworth S., Orgambide G., Dazzo F., Vanderleyden J. 1992; Analysis of extracellular polysaccharides isolated from Azospirillum brasilense wild type and mutants strains. Symbiosis 13:229–241
    [Google Scholar]
  22. Dische Z. 1962; General color reactions. Methods Carbohydr Chem 1:477–479
    [Google Scholar]
  23. Döbereiner J. 1991; The genera Azospirillum and Herbaspirillum. In The Prokaryotes vol 3 pp 2236–2253Edited by Balows A., Trüper H. G., Dworkin M., Harder W., Schleifer K. H. Berlin: Springer;
    [Google Scholar]
  24. Döbereiner J., Day J. M. 1976; Associative symbiosis in tropical grasses: characterization of microorganisms and dinitrogen fixing sites. In Proceedings of the First International Symposium on Nitrogen Fixation pp 518–538Edited by Newton E. W., Newman C. J. Pullman: Washington State University Press;
    [Google Scholar]
  25. Fani R., Bazzicalupo M., Ricci F., Schipani C., Polsinelli M. 1988; A plasmid vector for the selection and study of transcription promoters in Azospirillum brasilense. FEMS Microbiol Lett 50:271–276 [CrossRef]
    [Google Scholar]
  26. Figge R. M., Divakaruni A. V., Gober J. W. 2004; MreB, the cell shape-determining bacterial actin homologue, co-ordinates cell wall morphogenesis in Caulobacter crescentus. Mol Microbiol 51:1321–1332 [CrossRef]
    [Google Scholar]
  27. Forni C., Haegi A., Del Gallo M., Grilli Caiola M. 1992; Production of polysaccharides by Arthrobacter globiformis associated with Anabaena azollae in Azolla leaf cavity. FEMS Microbiol Lett 93:269–274 [CrossRef]
    [Google Scholar]
  28. Giovannetti L., Ventura S., Bazzicalupo M., Fani R., Materassi R. 1990; DNA restriction fingerprint analysis of the soil bacterium Azospirillum. J Gen Microbiol 136:1161–1116 [CrossRef]
    [Google Scholar]
  29. Hultgren S. J., Jones C. H., Normak S. 1996; Bacterial adhesins and their assembly. In Escherichia Coli and Salmonella: Cellular and Molecular Biology pp 2730–2756Edited by Neidhardt F. C.others Washington, DC: American Society for Microbiology;
    [Google Scholar]
  30. Jones L. J. F., Carballido-Lopez R., Errington J. 2001; Control of shape in bacteria: helical, actin-like filaments in Bacillus subtilis. Cell 104:913–922 [CrossRef]
    [Google Scholar]
  31. Katupitiya S., Millet J., Vesk M., Viccars L., Zeman A., Lidong Z., Elmerich C., Kennedy I. R. 1995; A mutant of Azospirillum brasilense Sp7 impaired in flocculation with a modified colonization pattern and superior nitrogen fixation in association with wheat. Appl Environ Microbiol 61:1987–1995
    [Google Scholar]
  32. Labigne-Reussel A., Schmidt M. A., Walz W., Falkow S. 1985; Genetic organization of the afimbrial adhesin operon and nucleotide sequence from a uropathogenic Escherichia coli gene encoding an afimbrial adhesin. J Bacteriol 162:1285–1292
    [Google Scholar]
  33. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  34. Linsmaier M. A., Skoog F. 1965; Organic growth factor requirement of tobacco tissue culture. Physiol Plant 18:100–127 [CrossRef]
    [Google Scholar]
  35. Lowry O. H., Rosebrough M. J., Farr A. L., Randall R. J. 1951; Protein measurement with Folin phenol reagent. J Biol Chem 193:265–275
    [Google Scholar]
  36. Madi L., Kessel M., Sadovnik E., Henis Y. 1989; Aggregation in Azospirillum brasilense Cd. Conditions and factors involved in cell-to-cell adhesion. Plant Soil 115:89–98 [CrossRef]
    [Google Scholar]
  37. Martinez-Dretz G., Del Gallo M., Burpee C., Burris R. H. 1984; Catabolism of carbohydrates and organic acids and expression of nitrogenase by azospirilla. J Bacteriol 159:80–85
    [Google Scholar]
  38. Matsuzawa H., Hayakawa K., Sato T., Imamori K. 1972; Characterization and genetic analysis of a mutant of Escherichia coli K12 with rounded morphology. J Bacteriol 115:436–442
    [Google Scholar]
  39. Michiels K., Vanderleyden J., Van Gool A., Signer E. R. 1989; Isolation and properties of Azospirillum lipoferum and Azospirillum brasilense surface polysaccharide mutants. In Nitrogen Fixation with Non-Legumes pp 189–195Edited by Skinner F. A., Boddey R. M., Fendrik I. Dordrecht: Kluwer;
    [Google Scholar]
  40. Michiels K., Verrath D. C., Vanderleyden J. 1990; Azospirillum lipoferum and A. brasilense surface polysaccharides mutants that are affected in flocculation. J Appl Bacteriol 69:705–711 [CrossRef]
    [Google Scholar]
  41. Michiels K., Croes C., Vanderleyden J. 1991; Two different modes of attachment of Azospirillum brasilense Sp7 to wheat roots. J Gen Microbiol 137:2241–2246 [CrossRef]
    [Google Scholar]
  42. Murray R. G. E., Moyles D. 1987; Differentiation of the cell wall of Azospirillum brasilense. Can J Microbiol 33:132–137 [CrossRef]
    [Google Scholar]
  43. Romantschuk M. 1992; Attachment of pathogenic bacteria to plant surfaces. Annu Rev Phytopathol 30:225–243 [CrossRef]
    [Google Scholar]
  44. Rosemberg M. 1984; Isolation of pigmented and nonpigmented mutants of Serratia marcescens with reduced cell surface hydrophobicity. J Bacteriol 160:480–482
    [Google Scholar]
  45. Sadasivan L., Neyra C. A. 1985; Flocculation in Azospirillum brasilense and A. lipoferum: exopolysaccharides and cyst formation. J Bacteriol 163:716–723
    [Google Scholar]
  46. Sadasivan L., Neyra C. A. 1987; Cyst production and brown pigment formation in aging cultures of Azospirillum brasilense ATCC 29145. J Bacteriol 169:1670–1677
    [Google Scholar]
  47. Sakai D. K. 1986; Electrostatic mechanism of survival of virulent Aeromonas salmonicida strains in river water. Appl Environ Microbiol 51:1343–1349
    [Google Scholar]
  48. Salvaraj G., Iyer V. N. 1983; Suicide plasmid vehicles for insertion mutagenesis in Rhizobium meliloti and related bacteria. J Bacteriol 151:1292–1300
    [Google Scholar]
  49. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  50. Schloter M., Moens S., Croes C., Reidel G., Esquenet M., De Mot R., Hartmann A., Michiels K. 1994; Characterization of cell surface components of Azospirillum brasilense Sp7 as antigenic determinants for strain-specific monoclonal antibodies. Microbiology 140:823–828 [CrossRef]
    [Google Scholar]
  51. Simon R., Priefer U., Puhler A. 1983; A broad host range mobilization system for in vivo genetic engineering: transposon mutagenesis in Gram negative bacteria. Bio/Technology 1:784–791 [CrossRef]
    [Google Scholar]
  52. Singh M., Klingmüller W. 1986; Transposon mutagenesis in Azospirillum brasilense: isolation of auxotrophic and Nif-mutants and molecular cloning of the mutagenized nif. DNA. Mol Gen Genet 202:136–142 [CrossRef]
    [Google Scholar]
  53. Tal S., Okon Y. 1985; Production of the reserve material poly-β-hydroxybutyrate and its function in Azospirillum brasilense Cd. Can J Microbiol 31:608–613 [CrossRef]
    [Google Scholar]
  54. Tarrand J. J., Krieg N. R., Döbereiner J. 1978; A taxonomic study of the Spirillum lipoferum group with description of a new genus,Azospirillum gen. nov. and two species, Azospirillum lipoferum (Beijerinck) comb. nov. and Azospirillum brasilensesp. nov.. Can J Microbiol 24:967–980 [CrossRef]
    [Google Scholar]
  55. van den Ent F., Amos L. A., Lowe J. 2001; Prokaryotic origin of the actin cytoskeleton. Nature 413:39–44 [CrossRef]
    [Google Scholar]
  56. Wachi M., Matsuhashi M. 1989; Negative control of cell division by mreB, a gene that functions in determining the rod shape of Escherichia coli cells. J Bacteriol 171:3123–3127
    [Google Scholar]
  57. Whallon J. H., Acker G., El-khawas H. 1985; Electron microscopy of young wheat roots inoculated with Azospirillum. In Azospirillum III: Genetics, Physiology, Ecology pp 222–229Edited by Klingmüller W. Berlin: Springer;
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26904-0
Loading
/content/journal/micro/10.1099/mic.0.26904-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error