1887

Abstract

A number of bacteria, including some significant pathogens, utilize -acylhomoserine lactones (AHLs) as quorum sensing signals. There is considerable interest in the therapeutic potential of disrupting quorum sensing. Recently, a number of bacteria have been identified which are capable of enzymic inactivation of AHLs. These enzymes show considerable promise as ‘quenchers' of quorum sensing. However, the assumption that the natural function of these enzymes is to disrupt or modulate quorum sensing has yet to be established. This review surveys the progress made to date in this field and examines what implications these findings have for our understanding of the role played by these enzymes .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26977-0
2004-07-01
2024-03-28
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502023.html?itemId=/content/journal/micro/10.1099/mic.0.26977-0&mimeType=html&fmt=ahah

References

  1. Aravind L. 1998; An evolutionary classification of the metallo-beta-lactamase fold proteins. In Silico Biol 1:69–91
    [Google Scholar]
  2. Axelrood P. E., Rella M., Schroth M. N. 1988; Role of antibiosis in competition of Erwinia strains in potato infection courts. Appl Environ Microbiol 54:1222–1229
    [Google Scholar]
  3. Bainton N. J., Stead P., Chhabra S. R., Bycroft B. W., Salmond G. P. C., Stewart G. S. A. B., Williams P. 1992; N-(3-Oxohexanoyl)-l-homoserine lactone regulates carbapenem antibiotic production in Erwinia carotovora. Biochem J 288:977–1004
    [Google Scholar]
  4. Bauer W. D., Robinson J. B. 2002; Disruption of quorum sensing by other organisms. Curr Opin Biotechnol 13:234–237 [CrossRef]
    [Google Scholar]
  5. Byers J. T., Lucas C., Salmond G. P. C., Welch M. 2002; Nonenzymatic turnover of an Erwinia carotovora quorum-sensing signaling molecule. J Bacteriol 184:1163–1171 [CrossRef]
    [Google Scholar]
  6. Carlier A., Uroz S., Smadja B., Fray R., Latour X., Dessaux Y., Faure D. 2003; The Ti plasmid of Agrobacterium tumefaciens harbours an attM-paralogous gene, aiiB, also encoding N-acyl homoserine lactonase activity. Appl Environ Microbiol 69:4989–4993 [CrossRef]
    [Google Scholar]
  7. Daiyasu H., Osaka K., Ishino Y., Toh H. 2001; Expansion of the zinc metallo-hydrolase family of the β-lactamase fold. FEBS Lett 503:1–6 [CrossRef]
    [Google Scholar]
  8. Dong Y.-H., Xu J.-L., Li X.-Z., Zhang L. H. 2000; AiiA, an enzyme that inactivates the acylhomoserine lactone quorum sensing signal and attenuates the virulence of Erwinia carotovora. Proc Natl Acad Sci U S A 97:3526–3531 [CrossRef]
    [Google Scholar]
  9. Dong Y.-H., Wang L.-H., Xu J.-L., Zhang H.-B., Zhang X.-F., Zhang L.-H. 2001; Quenching quorum-sensing-dependent bacterial infection by an N-acyl homserine lactonase. Nature 411:813–817 [CrossRef]
    [Google Scholar]
  10. Dong Y.-H., Gusti A. R., Zhang Q., Xu J.-L., Zhang L.-H. 2002; Identification of quorum quenching N-acyl homoserine lactonases from Bacillus species. . Appl Environ Microbiol 68:1754–1759 [CrossRef]
    [Google Scholar]
  11. Flagan S., Ching W.-K., Leadbetter J. R. 2003; Arthrobacter strain VAI-A utilizes acyl-homoserine lactone inactivation products and stimulates quorum signal biodegradation by Variovorax paradoxus. Appl Environ Microbiol 69:909–916 [CrossRef]
    [Google Scholar]
  12. Hentzer M., Givskov M. 2003; Pharmacological inhibition of quorum sensing for the treatment of chronic bacterial infections. J Clin Invest 112:1300–1307 [CrossRef]
    [Google Scholar]
  13. Huang J. J., Han J.-I., Zhang L.-H., Leadbetter J. R. 2003; Utilization of acyl-homoserine lactone quorum signals for growth by a soil pseudomonad and Pseudomonas aeruginosa PAO1. Appl Environ Microbiol 69:5941–5949 [CrossRef]
    [Google Scholar]
  14. Lamont I. L., Martin L. W. 2003; Identification and characterization of novel pyoverdine synthesis genes in Pseudomonas aeruginosa. Microbiology 149:833–842 [CrossRef]
    [Google Scholar]
  15. Leadbetter J. R., Greenberg E. P. 2000; Metabolism of acyl-homoserine lactone quorum-sensing signals by Variovorax paradoxus. J Bacteriol 182:6921–6926 [CrossRef]
    [Google Scholar]
  16. Lee S. J., Park S.-Y., Lee J.-J., Yum D.-Y., Koo B.-T., Lee J.-K. 2002; Genes encoding the N-acyl homoserine lactone-degrading enzyme are widespread in many subspecies of Bacillus thuringiensis. Appl Environ Microbiol 68:3919–3924 [CrossRef]
    [Google Scholar]
  17. Lin Y.-H., Xu J.-L., Hu J., Wang L.-H., Ong S. L., Leadbetter J. R., Zhang L.-H. 2003; Acyl-homoserine lactone acylase from Ralstonia strain XJ12B represents a novel and potent class of quorum-quenching enzymes. Mol Microbiol 47:849–860 [CrossRef]
    [Google Scholar]
  18. Matthysse A. G., Yarnall H., Boles S. B., McMahan S. 2000; A region of the Agrobacterium tumefaciens chromosome containing genes required for virulence and attachment to host cells. Biochim Biophys Acta 1490208–212 [CrossRef]
    [Google Scholar]
  19. Ochsner U. A., Wilderman P. J., Vasil A. I., Vasil M. L. 2000; GeneChip expression of the iron starvation response in Pseudomonas aeruginosa: identification of novel pyoverdine biosynthesis genes. Mol Microbiol 45:1277–1287
    [Google Scholar]
  20. Park S.-Y., Lee S. J., Oh T.-K., Oh J.-W., Koo B.-T., Yum D.-Y., Lee J.-K. 2003; AhlD, an N-acylhomoserine lactonase in Arthrobacter sp., and predicted homologues in other bacteria. Microbiology 149:1541–1550 [CrossRef]
    [Google Scholar]
  21. Pearson J. P., Feldman M., Iglewski B. H., Prince A. 2000; Pseudomonas aeruginosa cell-to-cell signaling is required for virulence in a model of acute pulmonary infection. Infect Immun 68:4331–4334 [CrossRef]
    [Google Scholar]
  22. Reimmann C., Ginet N., Michel L.9 other authors 2002; Genetically programmed autoinducer destruction reduces virulence gene expression and swarming motility in Pseudomonas aeruginosa PAO1. . Microbiology 148:923–932
    [Google Scholar]
  23. Smith K. M., Bu Y., Suga H. 2003; Induction and inhibition of Pseudomonas aeruginosa quorum sensing by synthetic autoinducer analogs. Chem Biol 10:81–89 [CrossRef]
    [Google Scholar]
  24. Uroz S., D'Angelo-Picard C., Carlier A., Elasri M., Sicot C., Petit A., Oger P., Faure D., Dessaux Y. 2003; Novel bacteria degrading N-acylhomoserine lactones and their use as quenchers of quorum-sensing-regulated functions of plant-pathogenic bacteria. Microbiology 149:1981–1989 [CrossRef]
    [Google Scholar]
  25. Vaudequin-Dransart V., Petit A., Chilton W. S., Dessaux Y. 1998; The cryptic plasmid of Agrobacterium tumefaciens cointegrates with the Ti plasmid and cooperates for opine degradation. Mol Plant–Microbe Interact 11:583–591 [CrossRef]
    [Google Scholar]
  26. Wang L. H., Weng L. X., Dong Y. H., Zhang L. H. 2004; Specificity and enzyme kinetics of the quorum-quenching N-acyl homoserine lactone lactonase (AHL-lactonase. J Biol Chem 279:13645–13651 [CrossRef]
    [Google Scholar]
  27. Xu F., Byun T., Dussen H.-J., Duke K. 2003; Degradation of N-acylhomoserine lactones, the bacterial quorum sensing molecules, by acylase. J Biotechnol 101:89–96 [CrossRef]
    [Google Scholar]
  28. Yates E. A., Philipp B., Buckley C.7 other authors 2002; N-acylhomoserine lactones undergo lactonolysis in a pH-, temperature-, and acyl chain length-dependent manner during growth of Yersinia pseudotuberculosis and Pseudomonas aeruginosa. Infect Immun 70:5635–5646 [CrossRef]
    [Google Scholar]
  29. Zhang H.-B., Wang L.-H., Zhang L.-H. 2002; Genetic control of quorum-sensing signal turnover in Agrobacterium tumefaciens. Proc Natl Acad Sci U S A 99:4638–4643 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26977-0
Loading
/content/journal/micro/10.1099/mic.0.26977-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error