1887

Abstract

Bacterial uridine monophosphate (UMP) kinases are essential enzymes encoded by genes, and conditional-lethal or other mutants were analysed with respect to structure–function relationships. A set of thermosensitive mutants from was generated and studied, along with already described mutants from serovar Typhimurium. It is shown that Arg-11 and Gly-232 are key residues for thermodynamic stability of the enzyme, and that Asp-201 is important for both catalysis and allosteric regulation. A comparison of the amino acid sequence of UMP kinases from several prokaryotes showed that these were conserved residues. Discussion on the enzyme activity level in relation to bacterial viability is also presented.

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.26996-0
2004-07-01
2024-03-29
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/7/mic1502153.html?itemId=/content/journal/micro/10.1099/mic.0.26996-0&mimeType=html&fmt=ahah

References

  1. Baker K. E., Ditullio K. P., Neuhard J., Kelln R. A. 1996; Utilization of orotate as a pyrimidine source by Salmonella typhimurium and Escherichia coli requires the dicarboxylate transport protein encoded by dctA. J Bacteriol 178:7099–7105
    [Google Scholar]
  2. Bradford M. M. 1976; A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein–dye binding. Anal Biochem 72:248–254 [CrossRef]
    [Google Scholar]
  3. Briozzo P., Golinelli-Pimpaneau B., Gilles A.-M., Gaucher J.-F., Burlacu-Miron S., Sakamoto H., Janin J., Bârzu O. 1998; Structures of Escherichia coli CMPK alone and in complex with CDP: a new fold of the nucleotide specificity. Structure 6:1517–1527 [CrossRef]
    [Google Scholar]
  4. Bucurenci N., Serina L., Zaharia C., Landais S., Danchin A., Bârzu O. 1998; Mutational analysis of UMP kinase from Escherichia coli. J Bacteriol 180:473–477
    [Google Scholar]
  5. Dreusicke D., Karplus P. A., Schulz G. E. 1988; Refined structure of porcine cytosolic adenylate kinase at 2·1 Å resolution. J Mol Biol 199:359–371 [CrossRef]
    [Google Scholar]
  6. Gagyi C., Bucurenci N., Sîrbu O. 7 other authors 2003; UMP kinase from the gram-positive bacterium Bacillus subtilis is strongly dependent on GTP for optimal activity. Eur J Biochem 270:3196–3204 [CrossRef]
    [Google Scholar]
  7. Gratton J.-P., Yu J., Griffith J. W., Babbitt R. W., Scotland R. S., Hickey R., Giordano F. J., Sessa W. C. 2003; Cell-permeable peptides improve cellular uptake and therapeutic gene delivery of replication-deficient viruses in cells and in vivo. Nature Med 9:357–363 [CrossRef]
    [Google Scholar]
  8. Ingraham J. L., Neuhard J. 1972; Cold-sensitive mutants of Salmonella typhimurium defective in uridine monophosphate kinase (pyrH. J Biol Chem 247:6259–6265
    [Google Scholar]
  9. Jensen K. F. 1989; Regulation of Salmonella typhimurium pyr gene expression: effect of changing both purine and pyrimidine nucleotide pools. J Gen Microbiol 135:805–815
    [Google Scholar]
  10. Kelln R. A., Foltermann K. F., O'Donovan G. A. 1975; Location of the argR gene on the chromosome of Salmonella typhimurium. Mol Gen Genet 139:277–284 [CrossRef]
    [Google Scholar]
  11. Kholti A., Charlier D., Gigot D., Huysveld N., Roovers M., Glansdorff N. 1998; pyrH-encoded UMP kinase directly participates in pyrimidine-specific modulation of promoter activity in Escherichia coli. J Mol Biol 280:571–582 [CrossRef]
    [Google Scholar]
  12. Krogan N. J., Zaharik M. L., Neuhard J., Kelln R. A. 1998; A combination of three mutations, dcd, pyrH and cdd, establishes thymidine (deoxyuridine) auxotrophy in thyA+ strains ofSalmonella typhimurium. J Bacteriol 180:5891–5895
    [Google Scholar]
  13. Labesse G., Bucurenci N., Douguet D., Sakamoto H., Landais S., Gagyi C., Gilles A.-M., Bârzu O. 2002; Comparative modelling and immunochemical reactivity of Escherichia coli UMP kinase. Biochem Biophys Res Commun 294:173–179 [CrossRef]
    [Google Scholar]
  14. Laemmli U. K. 1970; Cleavage of structural proteins during the assembly of the head of bacteriophage T4. Nature 227:680–685 [CrossRef]
    [Google Scholar]
  15. Landais S., Gounon P., Laurent-Winter C., Danchin A., Sakamoto H., Mazié J.-C., Bârzu O. 1999; Immunochemical analysis of UMP kinase from Escherichia coli. J Bacteriol 181:833–840
    [Google Scholar]
  16. Liljelund P., Lacroute F. 1986; Genetic characterization and isolation of the Saccharomyces cerevisiae gene coding for uridine monophosphokinase. Mol Gen Genet 205:74–81 [CrossRef]
    [Google Scholar]
  17. Liou J. Y., Dutschman G. E., Lam W., Jiang Z., Cheng Y. C. 2002; Characterization of human UMP/CMP kinase and its phosphorylation of d- and l-form deoxycytidine analogue monophosphates. Cancer Res 62:1624–1631
    [Google Scholar]
  18. Miller J. 1992 A Short Course in Bacterial Genetics: Laboratory Manual and Handbook for Escherichia Coli and Related Bacteria Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  19. Müller-Dieckmann H.-J., Schultz G. E. 1994; The structure of uridylate kinase with its substrates, showing the transition state geometry. J Mol Biol 236:361–367 [CrossRef]
    [Google Scholar]
  20. Munier-Lehmann H., Chafotte A., Pochet S., Labesse G. 2001; Thymidylate kinase of Mycobacterium tuberculosis: a chimera sharing properties common to eukaryotic and bacterial enzymes. Protein Sci 10:1195–1205 [CrossRef]
    [Google Scholar]
  21. Neuhard J., Kelln R. A. 1996 Biosynthesis and Conversions of Pyrimidines in Escherichia Coli and Salmonella: Cellular and Molecular Biology Washington, DC: American Society for Microbiology;
  22. O'Donovan G. A., Gerhart J. C. 1972; Isolation and partial characterization of regulatory mutants of the pyrimidine pathway in Salmonella typhimurium. J Bacteriol 109:1085–1096
    [Google Scholar]
  23. Raleigh E. A., Murray N. E., Revel H., Blumenthal R. M., Westaway D., Reith A. D., Rigby P. W. J., Elhai J., Hanahan D. 1988; McrA and McrB restriction phenotypes of some E. coli strains and implications for gene cloning. Nucleic Acids Res 16:1563–1575 [CrossRef]
    [Google Scholar]
  24. Roovers M., Charlier D., Feller A., Gigot D., Holemans F., Lissens W., Glansdorff N., Piérard A. 1998; carP, a novel gene regulating the transcription of the carbamoylphosphate synthetase operon of Escherichia coli. J Mol Biol 204:857–865
    [Google Scholar]
  25. Sambrook J., Fritsch E. F., Maniatis T. 1989 Molecular Cloning: a Laboratory Manual, 2nd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  26. Serina L., Blondin C., Krin E., Sismeiro O., Danchin A., Sakamoto H., Gilles A.-M., Bârzu O. 1995; Escherichia coli UMP-kinase, a member of the aspartokinase family, is a hexamer regulated by guanine nucleotides and UTP. Biochemistry 34:5066–5074 [CrossRef]
    [Google Scholar]
  27. Serina L., Bucurenci N., Gilles A.-M.7 other authors 1996; Structural properties of UMP-kinase from Escherichia coli: modulation of protein solubility by pH and UTP. Biochemistry 35:7003–7011 [CrossRef]
    [Google Scholar]
  28. Smallshaw J. C., Kelln R. A. 1992; Cloning, nucleotide sequence and expression of the Escherichia coli K-12 pyrH gene encoding UMP kinase. Genetics (Life Sci Adv) 11:59–65
    [Google Scholar]
  29. Wadskov-Hansen S. L., Martinussen J., Hammer K. 2000; The pyrH gene of Lactococcus lactis subsp. cremoris encoding UMP kinase is transcribed as part of an operon including the frr1 gene encoding ribosomal recycling factor 1. Gene 241:157–166 [CrossRef]
    [Google Scholar]
  30. Yamanaka K., Ogura T., Niki H., Hiraga S. 1992; Identification and characterization of the smbA gene, a suppressor of the mukB null mutant of Escherichia coli. J Bacteriol 174:7517–7526
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.26996-0
Loading
/content/journal/micro/10.1099/mic.0.26996-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error