1887

Abstract

Sensitivity to class IIa bacteriocins from lactic acid bacteria was recently associated with the mannose phosphotransferase system (PTS) permease, , in . To assess the involvement of this protein complex in class IIa bacteriocin activity, the operon, encoding , was heterologously expressed in an insensitive species, namely , using the NICE double plasmid system. Upon induction of the cloned operon, the recombinant became sensitive to leucocin A. Pediocin PA-1 and enterocin A also showed inhibitory activity against cultures expressing . Furthermore, the role of the three genes of the operon was investigated. Derivative plasmids containing various combinations of these three genes were made from the parental plasmid by divergent PCR. The results showed that expression of alone is sufficient to confer sensitivity to class IIa bacteriocins in .

Loading

Article metrics loading...

/content/journal/micro/10.1099/mic.0.27002-0
2004-08-01
2024-04-16
Loading full text...

Full text loading...

/deliver/fulltext/micro/150/8/mic1502663.html?itemId=/content/journal/micro/10.1099/mic.0.27002-0&mimeType=html&fmt=ahah

References

  1. Abee T. 1995; Pore-forming bacteriocins of gram-positive bacteria and self-protection mechanisms of producer organisms. FEMS Microbiol Lett 129:1–10 [CrossRef]
    [Google Scholar]
  2. Aymerich T., Holo H., Havarstein L. S., Hugas M., Garriga M., Nes I. F. 1996; Biochemical and genetic characterization of enterocin A from Enterococcus faecium, a new antilisterial bacteriocin in the pediocin family of bacteriocins. Appl Environ Microbiol 62:1676–1682
    [Google Scholar]
  3. Chikindas M. L., Garcia-Garcera M. J., Driessen A. J., Ledeboer A. M., Nissen-Meyer J., Nes I. F., Abee T., Konings W. N., Venema G. 1993; Pediocin PA-1, a bacteriocin from Pediococcus acidilactici PAC1.0, forms hydrophilic pores in the cytoplasmic membrane of target cells. Appl Environ Microbiol 59:3577–3584
    [Google Scholar]
  4. Dalet K., Cenatiempo Y., Cossart P, Héchard Y. 2001; A sigma(54)-dependent PTS permease of the mannose family is responsible for sensitivity of Listeria monocytogenes to mesentericin Y105. Microbiology 147:3263–3269
    [Google Scholar]
  5. de Ruyter P. G., Kuipers O. P., de Vos W. M. 1996; Controlled gene expression systems for Lactococcus lactis with the food-grade inducer nisin. Appl Environ Microbiol 62:3662–3667
    [Google Scholar]
  6. Deutscher J., Galinier A., Martin-Verstraete I. 2002; Carbohydrate uptake and metabolism. In Bacillus subtilis and its Closest Relatives: from Genes to Cells Edited by Sonenshein A. L., Hoch J. A., Losick R. Washington, DC: American Society for Microbiology;
    [Google Scholar]
  7. Eichenbaum Z., Federle M. J., Marra D., de Vos W. M., Kuipers O. P., Kleerebezem M., Scott J. R. 1998; Use of the lactococcal nisA promoter to regulate gene expression in gram-positive bacteria: comparison of induction level and promoter strength. Appl Environ Microbiol 64:2763–2769
    [Google Scholar]
  8. Eijsink V. G., Skeie M., Middelhoven P. H., Brurberg M. B., Nes I. F. 1998; Comparative studies of class IIa bacteriocins of lactic acid bacteria. Appl Environ Microbiol 64:3275–3281
    [Google Scholar]
  9. Ennahar S., Deschamps N., Richard J. 2000a; Natural variation in susceptibility of Listeria strains to class IIa bacteriocins. Curr Microbiol 41:1–4 [CrossRef]
    [Google Scholar]
  10. Ennahar S., Sashihara T., Sonomoto K., Ishizaki A. 2000b; Class IIa bacteriocins: biosynthesis, structure and activity. FEMS Microbiol Rev 24:85–106 [CrossRef]
    [Google Scholar]
  11. Esquinas-Rychen M., Erni B. 2001; Facilitation of bacteriophage lambda DNA injection by inner membrane proteins of the bacterial phosphoenol-pyruvate : carbohydrate phosphotransferase system (PTS). J Mol Microbiol Biotechnol 3:361–370
    [Google Scholar]
  12. Glaser P., Frangeul L., Buchrieser C.52 other authors 2001; Comparative genomics of Listeria species. Science 294:849–852
    [Google Scholar]
  13. Gravesen A., Ramnath M., Rechinger K. B., Andersen N., Jansch L., Hastings J. W, Héchard Y., Knöchel S. 2002; High-level resistance to class IIa bacteriocins is associated with one general mechanism in Listeria monocytogenes. Microbiology 148:2361–2369
    [Google Scholar]
  14. Guyonnet D., Fremaux C., Cenatiempo Y., Berjeaud J. M. 2000; Method for rapid purification of class IIa bacteriocins and comparison of their activities. Appl Environ Microbiol 66:1744–1748 [CrossRef]
    [Google Scholar]
  15. Héchard Y., Sahl H. G. 2002; Mode of action of modified and unmodified bacteriocins from Gram-positive bacteria. Biochimie 84:545–557 [CrossRef]
    [Google Scholar]
  16. Héchard Y., Pelletier C., Cenatiempo Y, Frère J. 2001; Analysis of σ54-dependent genes in Enterococcus faecalis: a mannose PTS permease (EIIMan) is involved in sensitivity to a bacteriocin, mesentericin Y105. Microbiology 147:1575–1580
    [Google Scholar]
  17. Henderson J. T., Chopko A. L., van Wassenaar P. D. 1992; Purification and primary structure of pediocin PA-1 produced by Pediococcus acidilactici PAC-1.0. Arch Biochem Biophys 295:5–12 [CrossRef]
    [Google Scholar]
  18. Kleerebezem M., Beerthuyzen M. M., Vaughan E. E, de Vos W. M., Kuipers O. P. 1997; Controlled gene expression systems for lactic acid bacteria: transferable nisin-inducible expression cassettes for Lactococcus, Leuconostoc, and Lactobacillus spp. Appl Environ Microbiol 63:4581–4584
    [Google Scholar]
  19. Mengaud J., Geoffroy C., Cossart P. 1991; Identification of a new operon involved in Listeria monocytogenes virulence: its first gene encodes a protein homologous to bacterial metalloproteases. Infect Immun 59:1043–1049
    [Google Scholar]
  20. Montville T. J., Chen Y. 1998; Mechanistic action of pediocin and nisin: recent progress and unresolved questions. Appl Microbiol Biotechnol 50:511–519 [CrossRef]
    [Google Scholar]
  21. Prenner E. J., Lewis R. N. A. H., McElhaney R. N. 1999; The interaction of the antimicrobial peptide gramicidin S with lipid bilayer model and biological membranes. Biochim Biophys Acta 1462:201–221 [CrossRef]
    [Google Scholar]
  22. Ramnath M., Beukes M., Tamura K., Hastings J. W. 2000; Absence of a putative mannose-specific phosphotransferase system enzyme IIAB component in a leucocin A-resistant strain of Listeria monocytogenes, as shown by two-dimensional sodium dodecyl sulfate-polyacrylamide gel electrophoresis. Appl Environ Microbiol 66:3098–3101 [CrossRef]
    [Google Scholar]
  23. Rasch M, Knöchel S. 1998; Variations in tolerance of Listeria monocytogenes to nisin, pediocin PA-1 and bavaricin A. Lett Appl Microbiol 27:275–278 [CrossRef]
    [Google Scholar]
  24. Sambrook J., Russell D. 2000 Molecular Cloning: a Laboratory Manual, 3rd edn. Cold Spring Harbor, NY: Cold Spring Harbor Laboratory;
  25. Vadyvaloo V., Hastings J. W., van der Merwe M. J., Rautenbach M. 2002; Membranes of class IIa bacteriocin-resistant Listeria monocytogenes cells contain increased levels of desaturated and short-acyl-chain phosphatidylglycerols. Appl Environ Microbiol 68:5223–5230 [CrossRef]
    [Google Scholar]
  26. Yan L. Z., Gibbs A. C., Stiles M. E., Wishart D. S., Vederas J. C. 2000; Analogues of bacteriocins: antimicrobial specificity and interactions of leucocin A with its enantiomer, carnobacteriocin B2, and truncated derivatives. J Med Chem 43:4579–4581 [CrossRef]
    [Google Scholar]
http://instance.metastore.ingenta.com/content/journal/micro/10.1099/mic.0.27002-0
Loading
/content/journal/micro/10.1099/mic.0.27002-0
Loading

Data & Media loading...

This is a required field
Please enter a valid email address
Approval was a Success
Invalid data
An Error Occurred
Approval was partially successful, following selected items could not be processed due to error